Answer: a) 
b) 1 mole of
is produced.
Explanation:
According to the law of conservation of mass, mass can neither be created nor be destroyed. Thus the mass of products has to be equal to the mass of reactants. The number of atoms of each element has to be same on reactant and product side. Thus chemical equations are balanced.
The skeletal equation is:

The balanced equation will be:

Thus the coefficients are 2, 3 , 10 , 4 , 3 , 2 and 5.
b) Oxidation: 
Reduction: 
Net reaction: 
When 1 mole of
is produced, 1 mole of
is produced.
number 5 is 1 : 1
number1 is also 1:1 ibelieve but it could be 2:1 just like number 5 but im postive its 1:1 for nummer 1 and number 5
Answer:
Explanation:
We will need a balanced equation with moles, so let's gather all the information in one place.
CH₃C₆H₄NH₂·HCl + (CH₃CO)₂O ⟶ CH₃C₆H₄NHCOCH₃ + junk
V/mL: 70.
c/mol·L⁻¹: 0.167
For simplicity in writing , let's call p-toluidine hydrochloride A and N-acetyl-<em>p</em>-toluidine B.
The equation is then
A + Ac₂O ⟶ B + junk
1. Moles of A

2. Moles of B
The molar ratio is 1 mol B:1 mol A
Moles of B = moles of A = 12 mmol = 0.012 mol

Answer:
the atomic packing factor of Sn is 0.24
Explanation:
a = b = 5.83A and c = 3.18A.
Volume of unit cell = a²c
= (5.83)² * 3.18 * 10⁻²⁴ cm³
= 1.08 * 10⁻²²cm³
Volume of atoms =

(∴ BCC, effective number of atom is 2)
Volume of atoms =

= 2.55*10⁻²³cm³


<h3>therefore, the atomic packing factor of Sn is 0.24</h3>
Enthalpy of formation is calculated by subtracting the total enthalpy of formation of the reactants from those of the products. This is called the HESS' LAW.
ΔHrxn = ΔH(products) - ΔH(reactants)
Since the enthalpies are not listed in this item, from reliable sources, the obtained enthalpies of formation are written below.
ΔH(C2H5OH) = -276 kJ/mol
ΔH(O2) = 0 (because O2 is a pure substance)
ΔH(CO2) = -393.5 kJ/mol
ΔH(H2O) = -285.5 kJ/mol
Using the equation above,
ΔHrxn = (2)(-393.5 kJ/mol) + (3)(-285.5 kJ/mol) - (-276 kJ/mol)
ΔHrxn = -1367.5 kJ/mol
<em>Answer: -1367.5 kJ/mol</em>