Answer:
<h3>The answer is 7.42 </h3>
Explanation:
The pH of a solution can be found by using the formula
![pH = - log [ { H_3O}^{+}]](https://tex.z-dn.net/?f=pH%20%3D%20-%20log%20%5B%20%7B%20H_3O%7D%5E%7B%2B%7D%5D)
From the question we have

We have the final answer as
<h3>7.42 </h3>
Hope this helps you
<em>Answer:</em>
- The concentration of new solution will be 1×10∧-7 M.
<em>Solution:</em>
<em>Data Given </em>
given mass of fluoxymesterone =16.8mg = 0.0168 g
molar mass of fluoxymesterone = 336g/mol
vol. of fluoxymesterone = 500.0 ml = 0.500 L
Stock Molarity of fluoxymesterone = (0.0168/336)÷0.500 = 1×10∧-4 M
So applying dilution formula
Stock Solution : New Solution
M1.V1 = M2.V2
( 1×10∧-4 M) × (1×10∧-6 L) = M2 × 0.001 L
[( 1×10∧-4) × (1×10∧-6)]÷[0.001] = M2
1 × 10∧-7 = M2
<em>Result:</em>
- The concentration of new solution M2 will be 1 × 10∧-7
Answer:
When water vapor in the air comes into contact with something cool, its molecules slow down and get closer together.
Explanation:
I hate it when you accidently drop your drink haha. Have a good day!!
Answer:
molecules C6H12O6 = 2.674 E22 molecules.
Explanation:
from periodic table:
⇒ molecular mass C6H12O6 = ((6)(12.011)) + ((12)(1.008)) + ((6)(15.999))
⇒ Mw C6H12O6 = 180.156 g/mol
⇒ mol C6H12O6 = (8.00 g)(mol/180.156 g) = 0.0444 mol C6H12O6
∴ mol ≡ 6.022 E23 molecules
⇒ molecules C6H12O6 = (0.0444 mol)(6.022 E23 molecules/mol)
⇒ molecules C6H12O6 = 2.674 E22 molecules