<h2>It will take 0.125 seconds to reach the net.</h2>
Explanation:
Initial speed, u = 34 ft/s = 10.36 m/s
Acceleration, a = -9.81 m/s²
Displacement, s = Final height - Initial height = 8 - 4 = 4 ft = 1.22 m
We have equation of motion, s = ut + 0.5 at²
Substituting
s = ut + 0.5 at²
1.22 = 10.36 x t + 0.5 x -9.81 x t²
4.905t² - 10.36 t + 1.22 = 0
t = 1.99 s or t = 0.125 seconds
Minimum time is 0.125 seconds.
It will take 0.125 seconds to reach the net.
15.49 should be the answer if that is 12 watt battery.
Answer:
121.3 cm^3
Explanation:
P1 = Po + 70 m water pressure (at a depth)
P2 = Po (at the surface)
T1 = 4°C = 273 + 4 = 277 K
V1 = 14 cm^3
T2 = 23 °C = 273 + 23 = 300 K
Let the volume of bubble at the surface of the lake is V2.
Density of water, d = 1000 kg/m^3
Po = atmospheric pressure = 10^5 N/m^2
P1 = 10^5 + 70 x 1000 x 10 = 8 x 10^5 N/m^2
Use the ideal gas equation

By substituting the values, we get

V2 = 121.3 cm^3
Thus, the volume of bubble at the surface of lake is 121.3 cm^3.
A set of data has a mean of 12 and a standard deviation of 3. A data point of the set has a z-score of 1.3. What does a z-score of 1.3 mean?
The data point is 1.3 standard deviations away from 3
The data point is 1.3 standard deviations away from 12.
The data point is 3 standard deviations away from 1.3.
The data point is 3 standard deviations away from 12.
its B