1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Stolb23 [73]
3 years ago
7

A diver jumps off a diving platform that is 20 meters long. Describe the transfer of energy that occurs during the fall.

Physics
1 answer:
kobusy [5.1K]3 years ago
8 0

Answer: gravitational potential energy is converted into kinetic energy

Explanation:

When the diver stands on the platform, at 20 m above the surface of the water, he has some gravitational potential energy, which is given by

E=mgh

where m is the man's mass, g is the gravitational acceleration and h is the height above the water. As he jumps, the gravitational potential energy starts decreasing, because its height h above the water decreases, and he acquires kinetic energy, which is given by

K=\frac{1}{2}mv^2

where v is the speed of the diver, which is increasing. When he touches the water, all the initial gravitational potential energy has been converted into kinetic energy.

You might be interested in
Prove the identity <br>Trigonometry grade 10​
g100num [7]

Answer:

and is in photo given.I didn't get time to type.

4 0
3 years ago
While traveling along a highway a driver slows from 31 m/s to 15 m/s in 8 seconds. What is the automobile’s acceleration? (Remem
MaRussiya [10]

Answer:

The automobile's acceleration in that time interval is -2 m/s^2

Explanation:

The acceleration is defined as the rate of change of the velocity.

The average acceleration in a given lapse of time is calculated as:

A = (final velocity - initial velocity)/time.

In this case, we have:

initial velocity = 31 m/s

final velocity = 15 m/s

time = 8 seconds.

Then the average acceleration is:

A = (15m/s - 31m/s)/8s = -2 m/s^2

8 0
2 years ago
The mass of the skier including his equipment is 75 kg in the ski race, the total vertical change in height is 880m
Bogdan [553]
75 percent off of water and please water the light water and water water and then go back and please water pollution please 880m
8 0
3 years ago
What is the formula that describes the magnitude of impulse on an object?
vladimir1956 [14]

Answer:

Option C.

Impulse = mass × change in velocity

Explanation:

Impulse is defined by the following the following formula:

Impulse = force (F) × time (t)

Impulse = Ft

From Newton's second law of motion,

Force = change in momentum /time

Cross multiply

Force × time = change in momentum

Recall:

Impulse = Force × time

Thus,

Impulse = change in momentum

Recall:

Momentum = mass x velocity

Momentum = mv

Chang in momentum = mass × change in velocity

Change in momentum = mΔv

Thus,

Impulse = change in momentum

Impulse = mass × change in velocity

8 0
3 years ago
I WILL MARK BRAINLIEST!!ASAP!!! Wet Lab - Coulomb's Law lab from edge!!
snow_tiger [21]

Answer:

h

Explanation:

Coulomb's law, or Coulomb's inverse-square law, is an experimental law[1] of physics that quantifies the amount of force between two stationary, electrically charged particles. The electric force between charged bodies at rest is conventionally called electrostatic force or Coulomb force.[2] The law was first discovered in 1785 by French physicist Charles-Augustin de Coulomb, hence the name. Coulomb's law was essential to the development of the theory of electromagnetism, maybe even its starting point,[1] as it made it possible to discuss the quantity of electric charge in a meaningful way.[3]

The law states that the magnitude of the electrostatic force of attraction or repulsion between two point charges is directly proportional to the product of the magnitudes of charges and inversely proportional to the square of the distance between them,[4]

{\displaystyle F=k_{\text{e}}{\frac {q_{1}q_{2}}{r^{2}}}}{\displaystyle F=k_{\text{e}}{\frac {q_{1}q_{2}}{r^{2}}}}

Here, ke is Coulomb's constant (ke ≈ 8.988×109 N⋅m2⋅C−2),[1] q1 and q2 are the signed magnitudes of the charges, and the scalar r is the distance between the charges.

The force is along the straight line joining the two charges. If the charges have the same sign, the electrostatic force between them is repulsive; if they have different signs, the force between them is attractive.

Being an inverse-square law, the law is analogous to Isaac Newton's inverse-square law of universal gravitation, but gravitational forces are always attractive, while electrostatic forces can be attractive or repulsive.[2] Coulomb's law can be used to derive Gauss's law, and vice versa. In the case of a single stationary point charge, the two laws are equivalent, expressing the same physical law in different ways.[5] The law has been tested extensively, and observations have upheld the law on the scale from 10−16 m to 108 m.[5]

7 0
3 years ago
Other questions:
  • un esquiador parte del reposo y se desliza pendiente abajo recorriendo 9m en 3s, con una aceleración constante calcular acelerac
    14·1 answer
  • Hans observed properties of four different waves and recorded observations about each one in his chart.
    7·2 answers
  • Why are pots and pans made of metals like steel and their handles made of plastic?
    8·1 answer
  • Please help with this!!!!!
    7·1 answer
  • Select all of the following that describes momentum, p [mark all correct answers]
    11·1 answer
  • Which of the following would demonstrate an attraction between magnetic poles?
    10·2 answers
  • The force between two very small charged bodies is found to be F. If the distance between them is tripled without altering their
    9·1 answer
  • En una barra de 6m que se utiliza como palanca se coloca el fulcro a 2 m de distancia del extremo derecho, como se muestra en la
    13·1 answer
  • plss answer what do yo call the substance from the male body that travel to the female body to make children​
    10·2 answers
  • How many electrons pass a given point in the circuit in 3 min? The fundamental charge is 1.602 × 10−19 C. amps: 0.415 , volts: 1
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!