During the diving when a diver jumps off from platform he brings her knees and arms closer to the body
This is because when diver is in air he don't have any torque about his center of mass which shows that angular momentum of his body will remain constant during his motion in air
Now we can say product of his moment of inertia and his angular speed will remain constant always
So here if we decrease the moment of inertia of the body during our motion then angular speed will increase so that product will remain constant
and this is what the diver use during his diving
so correct answer will be
<u><em>It decreases her moment of inertia.</em></u>
think you messed up the symbol for resistor as resistors are measured in ohms where the symbol used for ohms is Greek omega
solving for average power in secondary coil:
average power =(current rms)^2*resistance⇒with a little algebra:
current rms=(√average power/resistance)
current rms=√160W/10Ω
current rms=4amps.
average power is also equal to current rms*voltage rms
with some algebra we can solve for voltage in the secondary wire:
voltage rms= average power/ current rms
voltage rms= 160W/4A
voltage rms=40Volts
now that we have voltage in the soecondary we can solve for the amount of turns in the secondary: Voltage secondary/voltage primary=number of turns in secondary/ number of turns in primary. using some algerbra we can solve for number of turns in secondary: (Voltage secondary/voltage primary)*number of turns in primary=number of turns in secondary
(40V/120V)*75turns=number of turns in secondary
number of turns in secondary=25turns
Answer:
Total pressure exerted at bottom = 119785.71 N/m^2
Explanation:
given data:
volume of water in bottle = 150 L = 0.35 m^3
Area of bottle = 2 ft^2
density of water = 1000 kg/m
Absolute pressure on bottom of bottle will be sum of atmospheric pressure and pressure due to water
Pressure due to water P = F/A
F, force exerted by water = mg
m, mass of water = density * volume
= 1000*0.350 = 350 kg
F = 350*9.8 = 3430 N
A = 2 ft^2 = 0.1858 m^2
so, pressure P = 3430/ 0.1858 = 18460.71 N/m^2
Atmospheric pressure
At sea level atmospheric pressure is 101325 Pa
Total pressure exerted at bottom = 18460.71 + 101325 = 119785.71 N/m^2
Total pressure exerted at bottom = 119785.71 N/m^2