Answer:
kinetic energy
Explanation:
A wind turbine transforms the mechanical energy of wind into electrical energy. A turbine takes the kinetic energy of a moving fluid, air in this case, and converts it to a rotary motion. As wind moves past the blades of a wind turbine, it moves or rotates the blades. These blades turn a generator
No, because the energy is the capacity for performing work. Gravity is the force that draws everything to the earth's center.
Answer:
v = 5.24[m/s]
Explanation:
Este problema se puede resolver por medio del principio de la conservación de la energía, donde la energía potencial es igual a la energía cinética. Es decir a medida que el carrito desciende su energía potencial disminuye, pero su energía cinética aumenta.

Donde:

Ahora reemplazando:
![\frac{1}{2} *m*v^{2}=m*g*h\\\\0.5*v^{2}=9.81*1.4\\v=\sqrt{\frac{9.81*1.4}{0.5} } \\\\v=5.24[m/s]](https://tex.z-dn.net/?f=%5Cfrac%7B1%7D%7B2%7D%20%2Am%2Av%5E%7B2%7D%3Dm%2Ag%2Ah%5C%5C%5C%5C0.5%2Av%5E%7B2%7D%3D9.81%2A1.4%5C%5Cv%3D%5Csqrt%7B%5Cfrac%7B9.81%2A1.4%7D%7B0.5%7D%20%7D%20%20%20%5C%5C%5C%5Cv%3D5.24%5Bm%2Fs%5D)
Answer:

Explanation:
The electric flux is defined as the multiple of electric field and the area that the electric field passes through, such that

When calculating the electric flux, the angle between the directions of electric field and the area becomes important, especially if the angle is changing with time.
The above formula can be rewritten as follows

where θ is the angle between the electric field and the area of the loop. Note that, the direction of the area of the loop is perpendicular to the plane of the loop.
If the loop is rotating with constant angular velocity ω, then the angle can be written as follows

At t = 0, cos(0) = 1 and the electric flux through the loop is at its maximum value.
Therefore the electric flux can be written as a function of time
