The Ksp of Mg(OH)2 in water is 1.8 x 10-<span>11. This means that in pure water, Mg(OH)2 has a solubility of:
</span>∛[(1.8 x 10-11) / 4] = 1.65 x 10-4 mol/L
<span>which is equal to
</span>1.65 x 10-4<span> mol x (58.32) / 10 x 100 mL = 9.62 x 10-4g / 1x102 mL
If the pH is 12, the hydroxide concentration in the solvent is
10^-(14-12) = 0.01 mol/L
The solubility is solve using the formula
</span>1.8 x 10-11 = x (2(0.01 + x))^2
x = 4.5x10-8 mol/L
which is equal to
4.5x10-8 mol x (58.32) / 10 x 100 mL = 2.62 x 10-7g / 1x102 mL
Answer:
A. How the concentration of the reactants affects the rate of a reaction
Explanation:
Let's consider a generic reaction.
A + B ⇒ Products
The generic rate law is:
rate = k × [A]ᵃ × [B]ᵇ
where,
- rate: rate of the reaction
- [A] and [B]: molar concentrations of the reactants
As we can see, the rate law shows how the concentration of the reactants affects the rate of a reaction.
Answer:I think it’s mechanical energy
Explanation:
Answer:
200 torr
Explanation:
because it have 250ml when we subtract the 50 we get answer
A. Atomic radius increases