Answer:
f(x) = 3 cos (2Pi / period value ; x )+ 2
or see answer using 2 as the period see answer in bold below.
Step-by-step explanation:
cosine function amplitude of 3 is A = 3
The period is used to find B
You need to show period value as the denominator and work out from there with 2PI as a function numerator to show as 2pi / period can be a data angle
C is the adding value.
Acos (Bx) + C
A = 3
Bx = 2 pi / period
C = + 2
However f 2 is also the period found
then we just plug in 2 to above formula
f(x) = 3 cos (2Pi / 2 ; x )+ 2
f(x) = 3cos (x pi) + 2
4, 7 and 9 are mutually coprime, so you can use the Chinese remainder theorem.
Start with

Taken mod 4, the last two terms vanish and we're left with

We have
, so we can multiply the first term by 3 to guarantee that we end up with 1 mod 4.

Taken mod 7, the first and last terms vanish and we're left with

which is what we want, so no adjustments needed here.

Taken mod 9, the first two terms vanish and we're left with

so we don't need to make any adjustments here, and we end up with
.
By the Chinese remainder theorem, we find that any
such that

is a solution to this system, i.e.
for any integer
, the smallest and positive of which is 149.
Answer:
b
Step-by-step explanation:
plz mark brainliest
5 2/3 = 17/3 = 34/6
8 5/6 = 53/6
34/6 - 53/6 = -19/6 = -3 1/6
Answer:
-1 1/2
Step-by-step explanation: