A radar receiver indicates that a pulse return as an echo in 20 μs after it was sent. The reflecting object would be 3000 m away .
Phenomenon of hearing back our own sound is called an echo. It is due to successive reflection of sound waves from the surfaces or obstacles of large size. To hear an echo, there must be a time gap of 0.1 second in original sound and the reflected sound.
Given
time = 20 μs = 20 *
s
let distance to the reflecting surface be = x
total distance travelled by pulse will be = 2x
speed = 3.0 ×
m/s
distance = speed * time
2x = 3.0 ×
* 20 *
x = 3000 m
The reflecting object would be 3000 m away
To learn more about echo here
brainly.com/question/14861578?referrer=searchResults
#SPJ4
the answer your looking for is Optical instrument.
Answer:
The work done by the applied force is 259.22 J.
Explanation:
The work done by the applied force is given by:

Where:
F: is the applied horizontal force = 108.915 N
d: is the distance = 2.38 m
Hence, the work is:

Therefore, the work done by the applied force is 259.22 J.
I hope it helps you!
Answer
Wavelength= 30*20^8/30=10^7m
Explanation:
Velocity = frequency *wavelength
We're frequency=30HZ
Velocity of light= 3*10^8m/s
Wavelength= 30*20^8/30=10^7m
Explanation:
Answer:
<em> The planes average acceleration in magnitude and direction = 8.846 m/s² moving east</em>
Explanation:
Acceleration: This can be defined as the rate of change of velocity. The S.I Unit of acceleration is m/s². Acceleration is a vector quantity because it can be represented both in magnitude and in direction.
Acceleration can be represented mathematically as
a = v/t.................................... Equation 1
Where a = acceleration, v = velocity, t= time.
<em>Given: v = 115 m/s, t = 13.0 s</em>
<em>Substituting these values into equation 1</em>
<em>a = 115/13</em>
<em>a = 8.846 m/s² moving east</em>
<em>Thus the planes average acceleration in magnitude and direction = 8.846 m/s² moving east</em>