Respuesta:
24m
Explicación:
Según la ecuación de movimiento
v = u + en
Dado
Velocidad final v = 12 m / s
velocidad inicial u = 0 m / s
tiempo t = 4s
Sustituir
12 = 0 + 4a
a = 12/4
a = 3 m / s²
Lo siguiente es obtener la distancia;
S = ut + 1 / 2at²
S = 0 (4) + 1/2 (3) (4) ²
S = 3 * 16/2
S = 48/2
S = 24 m
Por lo tanto, la distancia requerida es de 24 m.
Answer:
The effective spring constant of the firing mechanism is 1808N/m.
Explanation:
First, we can use kinematics to obtain the initial velocity of the performer. Since we know the angle at which he was launched, the horizontal distance and the time in which it's traveled, we can calculate the speed by:

(This is correct because the horizontal motion has acceleration zero). Then:

Now, we can use energy to obtain the spring constant of the firing mechanism. By the conservation of mechanical energy, considering the instant in which the elastic band is at its maximum stretch as t=0, and the instant in which the performer flies free of the bands as final time, we have:

Then, plugging in the given values, we obtain:

Finally, the effective spring constant of the firing mechanism is 1808N/m.
Answer:
The maximum mass is 
Explanation:
The wavelength of the electron can be determined by means of the De Broglie equation.
(1)
Where h is the Planck's constant and p is the momentum.
(2)
Where m is the mass and v is the velocity.
Before using equation 2 it is necessary to express the wavelength from femtometers to meters.
--
Finally, equation 2 can be used.
But 
Hence, the maximum mass is 