Answer:Ek het geen idee nie jammer :(
Explanation:
<span>A. accelerate toward the more massive object is your answer. In fact, even the acceleration with accelerate, also known as the jer.k. The more massive object will pull on the smaller object and the smaller object will increase its speed towards the more massive object.
idk why jer.k is a swear</span>
Answer:
(a) 
(b) 
Explanation:
Given data
Distance r₁=50 m
Distance r₂=2 m
Intensity I₂=2.0 W/m²
To find
(a) The Sound Intensity I₁
(b) The Sound Intensity level β
Solution
For (a) the Sound Intensity I₁

For (b) the Sound Intensity level β
The Sound Intensity level β is calculated as follow

Answer:
The work done on the gas is equal to the area under the curve pv diagram w = area of triangle = 1/2 (base)(height) = 1/2 (BC)(Ac) = 1/2 (3v - v)(3p - p) = 1/2 (9 vp - 3 vp - 3vp + vp) = 4 vp/2 W = 2 vp
Check attachment for the diagrammatic representation
Given: v0= 18.0 m/s, y0=0m, yf=11m, g=-9.81 m/s^2
v0= initial velocity, vf= final velocity, y0= initial height, yf= final height, g= gravity, sqrt()= square root, ^2=squared
vf^2=v0^2 + (2)(g)(yf-y0)
vf^2=(18.0 m/s)^2+(2)(-9.81 m/s^2)(11 m-0m)
vf^2=18.0 m/s)^2 + (-19.62 m/s^2)(11 m)
vf^2=(324 m^2/s^2) - (215.82 m^2/s^2)
vf^2=108.18 m^2/s^2
vf=sqrt(108.18 m^2/s^2)
vf=10.4 m/s