Cost times 1.28 gives total cost
Answer:
???
Step-by-step explanation:
20+50+(4x12) so you need to basically solve this to find the answer because I am too lazy to do it myself
Answer: There will enough to paint the outside of a typical spherical water tower.
Step-by-step explanation:
1. Solve for the radius r from the formula for calculate the volume of a sphere. as following:
![V=\frac{4}{3}r^{3}\pi\\\frac{3V}{4\pi}=r^{3}\\r=\sqrt[3]{\frac{3V}{4\pi}}](https://tex.z-dn.net/?f=V%3D%5Cfrac%7B4%7D%7B3%7Dr%5E%7B3%7D%5Cpi%5C%5C%5Cfrac%7B3V%7D%7B4%5Cpi%7D%3Dr%5E%7B3%7D%5C%5Cr%3D%5Csqrt%5B3%5D%7B%5Cfrac%7B3V%7D%7B4%5Cpi%7D%7D)
2. Substitute values:
![r=\sqrt[3]{\frac{3(66,840.28ft^{3})}{4\pi}}=25.17ft](https://tex.z-dn.net/?f=r%3D%5Csqrt%5B3%5D%7B%5Cfrac%7B3%2866%2C840.28ft%5E%7B3%7D%29%7D%7B4%5Cpi%7D%7D%3D25.17ft)
3. Substitute the value of the radius into the equation fo calculate the surface area of a sphere, then you obtain that the surface area of a typical spherical water tower is:

3. If a city has 25 gallons of paint available and one gallon of paint covers 400 square feet of surface area, you must multiply 25 by 400 square feet to know if there will be enough to paint the outside of a typical spherical water tower.

As you can see, there will enough to paint the outside of a typical spherical water tower.
The first one is not a function due to the rule that there can not be more than one x, such as there is a repeated number 1 , 2 , 1 , 4 There should not be two
x = 1 terms.
Same the same rule applies to the second option as well as the last.
Your answer is C. or the third option
x= 6, 5, 4, 1
y=6, 4, 6, 2
Hope this Helps