Applied forces/or unbalanced:i hope that helps you
They are different by a phase shift of pi/2
Answer:
See explanation below
Explanation:
In this case, let's see both molecules per separate:
In the case of SeO₂ the central atom would be the Se. The Se has oxidation states of 2+, and 4+. In this molecule it's working with the 4+, while oxygen is working with the 2- state. Now, how do we know that Se is working with that state?, simply, let's do an equation for it. We know that this molecule has a formal charge of 0, so:
Se = x
O = -2
x + (-2)*2 = 0
x - 4 = 0
x = +4.
Therefore, Selenium is working with +4 state, the only way to bond this molecule is with a covalent bond, and in the case of the oxygen will be with double bond. See picture below.
In the case of CO₂ happens something similar. Carbon is working with +4 state, so in order to stabilize the charges, it has to be bonded with double bonds with both oxygens. The picture below shows.
The number of protons, neutrons, and electrons in an atom can be determined from a set of simple rules. The number of protons in the nucleus of the atom is equal to the atomic number (Z). The number of electrons in a neutral atom is equal to the number of protons.
Mass is related to weight. It measures the resistance of the substance to acceleration when a net force is applied.
Therefore: armful of lead has more mass
volume measures the amount of 3-dimensional space that an object occupies.
Therefore: kilogram of feather has more volume as it is less dense.
density is the mass per unit volume. Since armful of lead has more mass than a handful of feathers, while kilogram of feather has more volume than a kilogram of lead.
Therefore: kilogram of lead has higher density.