To check which ordered pair (point) is in the solution set of the system of given linear inequalities y>x, y<x+1; we just need to plug given points into both inequalities and check if that point satisfies both inequalities or not. If any point satisfies both inequalities then that point will be in solution.
I will show you calculation for (5,-2)
plug into y>x
-2>5
which is clearly false.
plug into y<x+1
-2<5+1
or -2<6
which is also false.
hence (5,-2) is not in the solution.
Same way if you test all the given points then you will find that none of the given points are satisfying both inequalities.
Hence answer will be "No Solution from given choices".
Answer:
There’s nothing to solve?
Step-by-step explanation:
Answer:
The height of the equilateral triangle is 
Step-by-step explanation:
we know that
An equilateral triangle has three congruent sides, and three congruent angles that each measure 60 degrees
To find out the height of an equilateral triangle, apply the Pythagoras Theorem in the right triangle ABD
Remember that the height of an equilateral triangle bisects the base.
see the attached figure to better understand the problem

substitute the given values

Solve for BD




simplify
`
therefore
The height of the equilateral triangle is 
Let's begin by listing the first few multiples of 4: 4, 8, 12, 16, 20, 24, 28, 32, 36, 38, 40, 44. So, between 1 and 37 there are 9 such multiples: {4, 8, 12, 16, 20, 24, 28, 32, 36}. Note that 4 divided into 36 is 9.
Let's experiment by modifying the given problem a bit, for the purpose of discovering any pattern that may exist:
<span>How many multiples of 4 are there in {n; 37< n <101}? We could list and then count them: {40, 44, 48, 52, 56, 60, 64, 68, 72, 76, 80, 84, 88, 92, 96, 100}; there are 16 such multiples in that particular interval. Try subtracting 40 from 100; we get 60. Dividing 60 by 4, we get 15, which is 1 less than 16. So it seems that if we subtract 40 from 1000 and divide the result by 4, and then add 1, we get the number of multiples of 4 between 37 and 1001:
1000
-40
-------
960
Dividing this by 4, we get 240. Adding 1, we get 241.
Finally, subtract 9 from 241: We get 232.
There are 232 multiples of 4 between 37 and 1001.
Can you think of a more straightforward method of determining this number? </span>