Static friction is what you are looking for.
Kinetic friction is the force exerted on an already moving object, slowing it down.
Answer:
Assume that the ball undergoes motion along a straight line. ... F = m A Force = (mass) x (acceleration) The question tells you the mass and the acceleration. All YOU have to do is take the numbers and pluggum into Newton's 2nd law. F = m A = (0.75 kg) (25 m/s²) = (0.75 x 25) kg-m/s² = 18.75 Newtons .
Explanation:
i looked it up ok
A diverging lens never produces a real image because the actual light rays never converge. They always diverge. ... A diverging virtual image is always SMALLER than the object. A converging virtual image is always LARGER than the object
Answer:
A) ΔU = 3.9 × 10^(10) J
B) v = 8420.75 m/s
Explanation:
We are given;
Potential Difference; V = 1.3 × 10^(9) V
Charge; Q = 30 C
A) Formula for change in energy of transferred charge is given as;
ΔU = QV
Plugging in the relevant values gives;
ΔU = 30 × 1.3 × 10^(9)
ΔU = 3.9 × 10^(10) J
B) We are told that this energy gotten above is used to accelerate a 1100 kg car from rest.
This means that the initial potential energy will be equal to the final kinetic energy since all the potential energy will be converted to kinetic energy.
Thus;
P.E = K.E
ΔU = ½mv²
Where v is final velocity.
Plugging in the relevant values;
3.9 × 10^(10) = ½ × 1100 × v²
v² = [7.8 × 10^(8)]/11
v² = 70909090.9090909
v = √70909090.9090909
v = 8420.75 m/s
You can't tell without knowing the values of the resistors. Whichever resistor has less resistance (less ohms) will have more current flowing through it.