Answer:
1.196 μm
Explanation:
D = Screen distance = 3 m
= Wavelength = 598 m
y = Distance of first-order bright fringe from the center of the central bright fringe = 4.84 mm
d = Slit distance


For first dark fringe

Wavelength of first-order dark fringe observed at this same point on the screen is 1.196 μm
Answer:
The velocity of the hay bale is - 0.5 ft/s and the acceleration is 
Solution:
As per the question:
Constant velocity of the horse in the horizontal, 
Distance of the horse on the horizontal axis, x = 10 ft
Vertical distance, y = 20 ft
Now,
Apply Pythagoras theorem to find the length:


Now,
(1)
Differentiating equation (1) w.r.t 't':


where
= Rate of change of displacement along the horizontal
= Rate of change of displacement along the vertical
= velocity along the x-axis.
= velocity along the y-axis



Acceleration of the hay bale is given by the kinematic equation:





Answer:
a) the charge of an electron is equivalent to the magnitude of the elementary charge but barring a negative sign since the side of the elementary charge is roughly 1.602 * 10 - 19 Columbus then the charge of the electronic is-1.602 * 10 - 19
b) b=2T on the electron moving in the magnetic field
Answer:
Spring constant, k = 24.1 N/m
Explanation:
Given that,
Weight of the object, W = 2.45 N
Time period of oscillation of simple harmonic motion, T = 0.64 s
To find,
Spring constant of the spring.
Solution,
In case of simple harmonic motion, the time period of oscillation is given by :

m is the mass of object


m = 0.25 kg


k = 24.09 N/m
or
k = 24.11 N/m
So, the spring constant of the spring is 24.1 N/m.