Answer:
The entropy change for a real, irreversible process is equal to <u>zero.</u>
The correct option is<u> 'c'.</u>
Explanation:
<u>Lets look around all the given options -:</u>
(a) the entropy change for a theoretical reversible process with the same initial and final states , since the entropy change is equal and opposite in reversible process , thus this option in not correct.
(b) equal to the entropy change for the same process performed reversibly ONLY if the process can be reversed at all. Since , the change is same as well as opposite too . Therefore , this statement is also not true .
(c) zero. This option is true because We generate more entropy in an irreversible process. Because no heat moves into or out of the surroundings during the procedure, the entropy change of the surroundings is zero.
(d) impossible to tell. This option is invalid , thus incorrect .
<u>Hence , the correct option is 'c' that is zero.</u>
When water is added to a compound in a chemical equation, a new compound can be formed, it is called a hydrolysis reaction.
<h3>What is hydrolysis reaction?</h3>
There are so many kinds of reaction in chemistry we know that a chemical reaction occurs between reactant molecules in order to yield products in the reactants.
The hydrolysis reaction is a breaking up reaction. In a hydrolysis reaction, water is used to break up a molecule. Hence in a hydrolysis reaction water could be regarded as one of the reactants in the reactions going on in the system.
We know that a hydrolysis is a reaction in which water reacts with another reactant molecule to yield products in the reaction. Thus, when water is added to a compound in a chemical equation, a new compound can be formed, it is called a hydrolysis reaction.
Learn more about hydrolysis:brainly.com/question/12237250
#SPJ1
Answer:
transmutation, conversion of one chemical element into another. A transmutation entails a change in the structure of atomic nuclei and hence may be induced by a nuclear reaction (q.v.), such as neutron capture, or occur spontaneously by radioactive decay, such as alpha decay and beta decay .
Answer:
1.15
Explanation:
2SO₂ + O₂ ⟶ 2SO₃; K =1.32
SO₂ + ½O₂ ⟶ SO₃; K₁ = ?
When you divide an equation by 2, you take the square root of its equilibrium constant.
K₁ = √1.32 = 1.15
The equilibrium constant is 1.15.
Answer:D
Explanation: Solid, liquid, and gas phases in equilibrium