*Answer:
Option A: 59.6
Explanation:
Step 1: Data given
Mass of aluminium = 4.00 kg
The applied emf = 5.00 V
watts = volts * amperes
Step 2: Calculate amperes
equivalent mass of aluminum = 27 / 3 = 9
mass of deposit = (equivalent mass x amperes x seconds) / 96500
4000 grams = (9* amperes * seconds) / 96500
amperes * seconds = 42888888.9
1 hour = 3600 seconds
amperes * hours = 42888888.9 / 3600 = 11913.6
amperes = 11913.6 / hours
Step 3: Calculate kilowatts
watts = 5 * 11913.6 / hours
watts = 59568 (per hour)
kilowatts = 59.6 (per hour)
The number of kilowatt-hours of electricity required to produce 4.00kg of aluminum from electrolysis of compounds from bauxite is 59.6 kWh when the applied emf is 5.00V
Answer:
0.0400M of KI
Explanation:
Molarity is an unit of concentration defined as the ratio between moles of solute and liters of solution.
When you add 10.0 mL of 0.10M KI and 15.0mL, total volume is:
25.0mL = <em>0.025L of solution</em>
<em />
And moles of KI are:
0.0100L × 0.10M = <em>0.00100 moles of KI</em>
<em />
Thus, molarity is:
0.00100 moles / 0.025L = <em>0.0400M of KI</em>
Answer:
The answer is not 9.9 i used that and got it wrong
Explanation: