Answer:
116.5 g of SO₂ are formed
Explanation:
The reaction is:
S₈(g) + 8O₂(g) → 8SO₂ (g)
Let's identify the moles of sulfur vapor, by the Ideal Gases Law
We convert the 921.4°C to Absolute T° → 921.4°C + 273 = 1194.4 K
5.87 atm . 3.8L = n . 0.082 L.atm/mol.K . 1194.4K
(5.87 atm . 3.8L) / (0.082 L.atm/mol.K . 1194.4K) = n → 0.228 moles of S₈
Ratio is 1:8, 1 mol of sulfur vapor can produce 8 moles of dioxide
Then, 0.228 moles of S₈ must produce (0.228 . 8) /1 = 1.82 moles
We convert the moles to g → 1.82 moles . 64.06 g /1mol = 116.5 g
The net force is 11.1 because 23.5-12.4 is your net force
hope this helps:)
Answer:
V = 240.79 L
Explanation:
Given data:
Volume of butane = ?
Temperature = 293°C
Pressure = 10.934 Kpa
Mass of butane = 33.25 g
Solution:
Number of moles of butane:
Number of moles = mass/ molar mass
Number of moles = 33.25 g/ 58.12 g/mol
Number of mole s= 0.57 mol
Now we will convert the temperature and pressure units.
293 +273 = 566 K
Pressure = 10.934/101 = 0.11 atm
Volume of butane:
PV = nRT
P= Pressure
V = volume
n = number of moles
R = general gas constant = 0.0821 atm.L/ mol.K
T = temperature in kelvin
V = nRT/P
V = 0.57 mol × 0.0821 atm.L/ mol.K ×566 K / 0.11 atm
V = 26.49 L/0.11
V = 240.79 L
Answer:
Yes, it does, although only physically and not chemically.
Explanation:
If a volume of gas is way spread out, it won't collide with the other gas particles as often, reducing pressure and temperature because they lose kinetic energy to their surroundings when they don't collide.
If it is compressed, it increases temperature and pressure because the gas particles collide with each other and the walls of the container way more often than if they had more space.
Hope this answers your question.
P.S.
Fun fact, gas particles are actually moving at 300-400 meters per second at room temperature, they only slow down to walking speed at very low temperatures, like 10 Kelvin