Answer:
, repulsive
Explanation:
The magnitude of the electric force between two charged particles is given by Coulomb's law:
where:
is the Coulomb's constant
are the two charges of the two particles
r is the separation between the two charges
The force is:
- repulsive if the two charges have same sign
- Attractive if the two charges have opposite signs
In this problem, we have two electrons, so:
is the magnitude of the two electrons
is their separation
Substituting into the formula, we find the electric force between them:

And the force is repulsive, since the two electrons have same sign charge.
Answer:
168.57 mV
Explanation:
Initial magnetic flux = BA , B magnetic field and A is area of loop
= .35 x 3.14 x .37²
= .15 Weber
Final magnetic flux
= - .2 x 3.14 x .37²
= - .086 Weber
change in flux
.15 + .086
= .236 Weber
rate of change of flux
= .236 / 1.4
= .16857 V
= 168.57 mV
To solve this problem it is necessary to apply the concepts related to wavelength depending on the frequency and speed. Mathematically, the wavelength can be expressed as

Where,
v = Velocity
f = Frequency,
Our values are given as
L = 3.6m
v= 192m/s
f= 320Hz
Replacing we have that


The total number of 'wavelengths' that will be in the string will be subject to the total length over the size of each of these undulations, that is,



Therefore the number of wavelengths of the wave fit on the string is 6.
** Missing information: The vertical distance from surface of liquid to bottom of the object is sought in this question, with the condition that the object is at equilibrium **
Ans: The vertical distance = y = M/(ρA)
Explanation:Support the vertical distance = y
Object's density = M/(A*h) (since A*h = volume)
By applying the condition,
(M/(Ah))/ρ = y/h
M/(ρAh) = y/h
y = M/(ρA)
Answer:
Right Hand Rule
Explanation:
When a charged particle travels in a magnetic field, it experiences a force whose magnitude is given by:

where
q is the charge of the particle
v is the velocity
B is the magnetic field strength
is the angle between the directions of v and B
The direction of the force can be determined by using the Right Hand Rule, as follows:
- index finger: this should be put in the direction of the velocity
- middle finger: this should be put in the direction of the magnetic field
- thumb: this will give the direction of the force -> however, for a negative charge (as the electron) the direction must be reversed, so it will be opposite.