The distance of the object from the lens is 3.12 cm.
<h3>What is magnification?</h3>
Magnification is the process of of enlarging an apparent size of an object.
<h3>Object distance</h3>
The object distance is calculated using the following lens formula;

where;
- M is the magnification
- V is the image distance
- U is object distance

Thus, the distance of the object from the lens is 3.12 cm.
Learn more about object distance here: brainly.com/question/24894435
Answer:
If one wraps the fingers around the wire and points the thumb in the direction of the "conventional" current the fingers will point towards the North pole - the direction of the B-field.
In this case the B-field is pointed "West".
Answer:
(a) Position Vectors V₁= -2î km, V₂=5î km
(b) Displacement Δx=7 km
Explanation:
Given data
Distance=2 km west at t=0
Distance=5 km east at t=6 min
Positive x is the east direction
To find
(a)Car position vector at given times
(b)Displacement between 0 to 6.0 min
Solution
For Part (a) car position vector at given times
At t=0 the distance=2 km west so conclude that x₁=-2 because it is in negative side So vector V₁
V₁= -2î km
At t=6.0 the distance=5 km east so conclude that x₂=5 because it is in positive side So vector V₂
V₂=5î km
For (b) displacement between 0 to 6.0 min
According to following mathematical law we can conclude that
Δx=x₂-x₁
Δx=5-(-2)km
Δx=7 km
The cart's acceleration to the right after the mass is released is determined as 7.54 m/s².
<h3>
Acceleration of the cart</h3>
The acceleration of the cart is determined from the net force acting on the mass-cart system.
Upward force = Downward force
ma = mg
13a = 10(9.8)
13a = 98
a = 98/13
a = 7.54 m/s²
Thus, the cart's acceleration to the right after the mass is released is determined as 7.54 m/s².
Learn more about acceleration here: brainly.com/question/14344386
#SPJ1