Explanation:
This is the description of the equilibrium constant equation. For example:
Given a generic reaction: 
Where A.B,C and D are the reactants and products and a,b,c and d are their stoichiometric coefficients. The equilibrium constant of this reaction will be:
![K=\frac{[C]^c*[D]^d}{[A]^a*[B]^b}](https://tex.z-dn.net/?f=K%3D%5Cfrac%7B%5BC%5D%5Ec%2A%5BD%5D%5Ed%7D%7B%5BA%5D%5Ea%2A%5BB%5D%5Eb%7D)
<em>Note: is important to have in mind that the substances in solid or liquid (pure) state should not be included in the K equation.</em>
Answer:
Explanation:
<u>1) Balanced chemical equation:</u>
<u>2) Mole ratio:</u>
- 2 mol S : 3 mol O₂ : 2 mol SO₃
<u>3) Limiting reactant:</u>
n = 6.0 g / 32.0 g/mol = 0.1875 mol O₂
n = 7.0 g / 32.065 g/mol = 0.2183 mol S
Actual ratio: 0.1875 mol O₂ / 0.2183 mol S =0.859
Theoretical ratio: 3 mol O₂ / 2 mol S = 1.5
Since there is a smaller proportion of O₂ (0.859) than the theoretical ratio (1.5), O₂ will be used before all S be consumed, and O₂ is the limiting reactant.
<u>4) Calcuate theoretical yield (using the limiting reactant):</u>
- 0.1875 mol O₂ / x = 3 mol O₂ / 2 mol SO₃
- x = 0.1875 × 2 / 3 mol SO₃ = 0.125 mol SO₃
<u>5) Yield in grams:</u>
- mass = number of moles × molar mass = 0.125 mol × 80.06 g/mol = 10.0 g
<u>6) </u><em><u>Percent yield:</u></em>
- Percent yield, % = (actual yield / theoretical yield) × 100
- % = (7.9 g / 10.0 g) × 100 = 79%
Answer:
A) 900 J
B) 27.96 J
C) 1,628 J ≅ 1.63 kJ
Explanation:
The heat absorbed by the metal (silver) - or energy required to heat it - is calculated as:
heat = mass x Cp x ΔT
Where Cp is the heat capacity (0.24 J/°C ·g) and ΔT is the change in temperature (final T - initial T).
A) Given:
mass = 150.0 g
final T = 298 K = 25°C
initial T = 273 K = 0°C
We calculate the energy in J to raise the temperature:
heat = mass x Cp x (final T - initial T)
= 150 .0 g x 0.24 J/°C ·g x (25°C - 0°C )
= 900 J
B) Given:
moles Ag= 1.0 mol
ΔT = 1.08°C
We first calculate the mass of silver (Ag) by multiplying the moles of Ag by the molar mass of Ag (MM = 107.9 g/mol)
mass = moles x MM = 1.0 mol Ag x 107.9 g/mol Ag = 107.9 g
Then, we calculate the heat required:
heat = mass x Cp x ΔT = 107.9 g x 0.24 J/°C ·g x 1.08°C = 27.96 J
C) Given:
heat = 1.25 kJ = 1,250 J
final T = 15.28°C
initial T = 12.08°C
We first calculate the change in temperature:
ΔT = final T - initial T = 15.28°C - 12.08°C = 3.2°C
Then, we calculate the mass of silver:
mass = heat/(Cp x ΔT) = 1,250 J/(0.24 J/°C ·g x 3.2°C) = 1,628 J ≅ 1.63 kJ
Answer:
Chemical, Mechanical, and Nuclear Energy
Explanation: