The calculation for such a question can be achieved via Avogadro hypothesis
We know molar mass of CO2 is 44g/mole which is the sum of atomic masses i.e; C and 2 oxygen atoms
Molar mass of CO2 =12(C)+2*16(O) = 44 g/mole will contain 6.023 ※10^23 CO2 molecules ..
44g/mole = 6.023 ※10^23 CO2 molecules
=> 1g = (6.023/44) ※10^23 CO2 molecules
==> 8.80g = 8.80(6.023÷44)10^23 = 1.2046 ※10^23 molecules of CO2….
Thus there r 1.2046 ※10^23 molecules of CO2 in 8.80g
if u need to calculate no. of carbon atoms then multiply result by 1 and if u need no of oxygen atoms in 8.80g of co2 then multiply the result by 2 ….
Answer:
C . 24 L
Explanation:
Given data:
Initial volume of gas = 20.0 L
Initial pressure of gas = 660 mmHg
Final volume = ?
Final pressure = 550 mmHg
Solution:
The given problem will be solved through the Boly's law,
"The volume of given amount of gas is inversely proportional to its pressure by keeping the temperature and number of moles constant"
Mathematical expression:
P₁V₁ = P₂V₂
P₁ = Initial pressure
V₁ = initial volume
P₂ = final pressure
V₂ = final volume
Now we will put the values in formula,
P₁V₁ = P₂V₂
660 mmHg × 20.0 L = 550 mmHg × V₂
V₂ = 13200 mmHg. L/ 550 mmHg
V₂ = 24 L
Answer:
The correct answer is "They can be separated by physical processes"
Explanation:
The definition of Mixtures is <em>the blending of two or more dissimilar substances</em>.
Mixtures can be divided into those that are homogeneous or heterogeneous meaning that they can be distributed evenly or can't be distributed evenly.
Explanation:
It is known that the specific heat capacity of Liver is 3.59 kJ
It is given that :
Initial temperature of Liver = Body temperature = = 310 K
Final temperature of Liver = 180 K
Relation between heat energy, mass, and change in temperature is as follows.
Q =
Now, putting the given values into the above formula as follows.
Q =
Q =
= 700.05 kJ
Therefore, we can conclude that amount of heat which must be removed from the liver is 700.05 kJ.
Here is your answer
REASON:
Elements which have 4 valence electrons are generally metalloids.
The metalloids show the properties of both metals and non-metals.
We know that,
no. of protons= Atomic number
So,
Atomic no.= 32
Hence,
The element is Germanium which is a metalloid with 4 valence electrons and has 32 protons in nucleus of each atom because it has atomic no. 32
HOPE IT IS USEFUL