Nuclear Fusion is the answer to the question who posted.
Answer:
I think b is the correct answer
Nitrogen triiodide<span> is the </span>inorganic compound<span> with the formula </span>NI3<span>. It is an extremely sensitive </span>contact explosive<span>: small quantities explode with a loud, sharp snap when touched even lightly, releasing a purple cloud of iodine vapor; it can even be detonated by </span>alpha radiation. NI3<span> has a complex structural chemistry that is difficult to study because of the instability of the derivatives.</span>
7.5 mol of hydrogen would be needed to consume the available nitrogen.
Explanation:
When hydrogen reacts with nitrogen, ammonia is formed as shown below;
3H₂ (g) + N₂ (g) → 2NH₃ (g)
As seen from the equation, every 3 moles of H₂ react with a mole of N₂ to form 2 moles of NH₃.
The limiting factor in a chemical reaction is the reactant that gets depleted first.
Because the molar mass of nitrogen gas is approximately 28g/mol, 70g of nitrogen gas would be 2.5 moles.
The reaction ratio of nitrogen to hydrogen in the reaction is 1 : 3. The reaction would require 2.5 * 3 (7.5) moles of hydrogen for a complete reaction.
However since there are only 7g on hydrogen, (Remember 1 mole of H₂ is approximately 2g), the available moles of H₂ is 7 / 2 = 3.5
3.5 moles fall short of the 7.5 moles of H₂ required for a complete reaction. H₂ gets depleted first before N₂. The reaction would require 4 more moles of H₂.
Answer:
The percent error of the thermometer is 3%
Please give me the brainliest if you find this helpful