Explanation:
<em>Acidic</em><em> </em><em>radical</em><em> </em>
<em>Acid radical is the ion formed after the removal of Hydrogen ion (H+) from an acid. Example: When H2SO4 loses H+ ion, it forms HSO4− which is an acid radical.</em><em> </em>
<em>Basic</em><em> </em><em>radical</em><em> </em>
<em> The ion formed after the removal of hydroxide ion (OH−) from a base is known as basic radical.</em>
Answer:
The answer is <u>applied research</u>
Explanation:
Pure research becomes <u>applied research</u> when scientists develop a hypothesis based on the data and try to solve a specific problem.
This is because the pure research try to understand, predict or explain the behavior of different phenomena <em>(the data)</em> while the applied research try to develop new technologies or methods (<em>hypothesis)</em> to take part, intervene and/or create changes on these phenomena and solve a <em>specific problem.</em>
Answer:
287.30 g of FeCO₃
Solution:
The Balance Chemical Equation is as follow,
FeCl₂ + Na₂CO₃ → FeCO₃ + 2 NaCl
Step 1: Calculate Mass of FeCl₂ as,
Molarity = Moles ÷ Volume
Solving for Moles,
Moles = Molarity × Volume
Putting Values,
Moles = 2 mol.L⁻¹ × 1.24 L
Moles = 2.48 mol
Also,
Moles = Mass ÷ M.Mass
Solving for Mass,
Mass = Moles × M.Mass
Putting Values,
Mass = 2.48 mol × 126.75 g.mol⁻¹
Mass = 314.34 g of FeCl₂
Step 2: Calculate Mass of FeCO₃ formed as,
According to equation,
126.75 g (1 mole) FeCl₂ produces = 115.85 g (1 mole) FeCO₃
So,
314.34 g of FeCl₂ will produce = X g of FeCO₃
Solving for X,
X = (314.34 g × 115.85 g) ÷ 126.75 g
X = 287.30 g of FeCO₃
<h2>
brainlyest pleas</h2>
A threat is a potential risk loss to an asset
Answer:
Wind
Explanation:
Most conifers and about 12% of the world's flowering plants are wind-pollinated. Wind pollinated plants include grasses and their cultivated cousins, the cereal crops, many trees, the infamous allergenic ragweeds, and others. All release billions of pollen grains into the air so that a lucky few will hit their targets.