Answer:
V₀ = 5.47 m/s
Explanation:
The jumping motion of the Salmon can be modelled as the projectile motion. So, we use the formula for the range of projectile motion here:
R = V₀² Sin 2θ/g
where,
R = Range of Projectile = 3.04 m
θ = Launch Angle = 41.7°
V₀ = Minimum Launch Speed = ?
g = 9.81 m/s²
Therefore,
3.04 m = V₀² [Sin2(41.7°)]/(9.81 m/s²)
V₀² = 3.04 m/(0.10126 s²/m)
V₀ = √30.02 m²/s²
<u>V₀ = 5.47 m/s</u>
The formula that links voltage (V), resistance (R) and current intensity (I) is

Solve this formula for I to get

Plug your values for V and R and you'll get the current.
Aswer:
False, the values of the distance traveled and the displacement only coincide when the trayectorie is a straight line. Otherwise, the distance will always be greater than the offset.
Although these terms are used synonymously in other cases, they are totally different. Since the distance that a mobile travels is the equivalent of the length of its trajectory. Whereas, the displacement will be a vector magnitude.
<u>xXCherryCakeXx</u>.
Answer:
1.30
Explanation:
To calculate the critical angle we have ti use the formula:

where theta_c is the critical angle, n1 is the index of refraction of the material where the light is totally reflected, and n2 is the refractive index of the other material.
By taking n_2 and replacing we obtain:

hope this helps!!
The cart travelled a distance of 14.4 m
Explanation:
The work done by a force when pushing an object is given by:

where:
F is the magnitude of the force
d is the displacement
is the angle between the direction of the force and the displacement
In this problem we have:
W = 157 J is the work done on the cart
F = 10.9 N is the magnitude of the force
, assuming the force is applied parallel to the motion of the cart
Therefore we can solve for d to find the distance travelled by the cart:

Learn more about work:
brainly.com/question/6763771
brainly.com/question/6443626
#LearnwithBrainly