Answer:
An oxidizing agent (also called an oxidizer or oxidant) is referred to as a chemical compound that readily transfers oxygen atoms or a substance that gains electrons in a redox chemical reaction.
Explanation:
hope this helped you <3
Explanation:
25. Binary ionic compounds: They are known as the compounds which contains a cation formed from a metal and an anion formed from a non-metal or a polyatomic anion. For example : Barium sulfate
Ba : +2 ( metal of group II-A)
: -2 ( sulfate)
These two ions combine to form a binary ionic compound having formula 
Binary Molecular compounds: They are known as the compounds which contain two or more non-metals that are bonded covalently. In these compounds, no ions are present because the electrons are shared by the atoms. Examples are:
: phosphorous trichloride
: sulfur dioxide
26. The general chemical formula for an acid is HX where H is the hydrogen and X is the non-metal or polyatomic ions. Examples of acids are:
HF : Hydrofluoric acid
: Sulfuric acid
Answer:
Temperature required = 923K
Explanation:
The question is incomplete as there are some details that has to be given. details like the values of the standard enthalpies and entropies of the reactants and product as this is needed to calculate the actual value of the standard enthalpies and standard entropies of the reaction. I was able to get those values from literature and then calculated what needs to be calculated.
From there, I was able to use the equation that shows the relationship between, gibb's free energy, enthalpy, entropy and temperature. The necessary mathematical manipulation were done and the values were plugged in to get the temperature required to make the reaction spontaneous.
A few notes on the Gibb's free energy.
The Gibb's free energy also referred to as the gibb's function represented with letter G. it is the amount of useful work obtained from a system at constant temperature and pressure. The standard gibb's free energy on the other hand is a state function represented as Delta-G, as it depends on the initial and final states of the system.
The spontaneity of a reaction is explained by the standard gibb's free energy.
- If Delta-G = -ve ( the reaction is spontaneous)
- if Delta -G = +ve ( the reaction is non-spontaneous)
- if Delta-G = 0 ( the reaction is at equilibrium)
The step by step calculations is done as shown in the attachment.
Answer:
The standard change in free energy for the reaction = - 437.5 kj/mole
Explanation:
The standard change in free energy for the reaction:
4 KClO₃ (s) → 3 KClO₄(s) + KCl(s)
Given that ΔGf(KClO3(s)) = -290.9 kJ/mol;
ΔGf(KClO4(s)) = -300.4 kJ/mol;
ΔGf(KCl(s)) = -409 kJ/mol
According to Hess's law
ΔGr (Free energy change of reaction)= ∑(Product free energy - reactant free energy)
⇒ ΔGr⁰ = {3 x (-300.4) + (-409)} - {3 x (- 290.9)}
= - 901.2 - 409 + 872.7
= - 437.5 kj/mole
<span>N2 + 3H2 → 2 </span>NH3<span> from bal. rxn., 2 moles of </span>NH3<span> are formed per 3 moles of </span>H2, 2:3 moleH2<span>: 3.64 </span>g<span>/ 2 </span>g<span>/mole </span>H2<span>= 1.82 1.82 moles </span>H2<span> x 2/3 x 17
</span>