Answer:
0.218 M of Pb(NO3)2
Explanation:
Equation of the reaction
Pb(NO3)2(aq) + 2NaCl(aq) --> PbCl2(s) + 2NaNO3(aq)
1 mole of Pb(NO3)2 reacts to precipitate 1 mole of PbCl2
Molar mass of PbCl2 = 207 + (35.5*2)
= 278 g/mol
Number of moles of PbCl2 precipitated = mass/molar mass
= 12.11/278
= 0.04356 mol
Since 0.04356 moles of PbCl2 was precipitated, therefore by stoichiometry; 0.04356 moles of Pb(NO3)2 reacted.
Molarity is defined as the number of moles of solute in 1 liter of solution.
Molarity = number of moles/volumes
= 0.04356/0.2
= 0.218 M
Answer:
162g
Explanation:
We'll begin by writing the balanced equation for the reaction. This is given below:
2C2H6 + 7O2 —> 4CO2 + 6H2O
Next, we shall determine the number of mole of water, H2O produced by the reaction of 3 moles of C2H6.
This can be obtained as follow:
From the balanced equation above,
2 moles of C2H6 reacted to produce 6 moles of H2O.
Therefore, 3 moles of C2H6 will react to produce = (3 x 6)/2 = 9 moles of H2O.
Therefore, 9 moles of H2O is produced from the reaction.
Finally, we shall convert 9 moles of H2O to grams.
This can be done as shown below:
Molar mass of H2O = (2x1) + 16 = 18g/mol
Mole of H2O = 9 moles
Mass of H2O =..?
Mole = mass / molar mass
9 = mass of H2O /18
Cross multiply
Mass of H2O = 9 x 18
Mass of H2O = 162g
Therefore, 162g of H2O were produced from 3 moles of C2H6.
The answer is A you shouldn't discourage a child like that
Answer:
375 mL
Explanation:
M1*V1 = M2*V2
M1 = 1.00 M
V1 = ?
M2 = 0.750 M
V2 = 0.500 L
1.00 M * V1 = 0.750 M * 0.500 L
V1 = 0.750*0.500/1.00 = 0.375 L = 375 mL
A and C are incorrect because they are not complete transfer of valence electrons. Ionic bonds best to form a neutral molecule