When a glacier has equal snow accumulation and wastage. Hope this helps!
Explanation:
The given data is as follows.
Heat transfer coefficient (h) = 12
Plate temperature (
) =
= 303 K
Steady state temperature (
) = ?
Hence, formula applied for steady state is as follows.
= 
Putting the given values into the above formula as follows.
= 
= ![5.67 \times 10^{-8} \times [(30 + 273)^{4} - T^{4}_{2}]](https://tex.z-dn.net/?f=5.67%20%5Ctimes%2010%5E%7B-8%7D%20%5Ctimes%20%5B%2830%20%2B%20273%29%5E%7B4%7D%20-%20T%5E%7B4%7D_%7B2%7D%5D)
= 282.66 K
= (282.66 -273)
= 9.66
Thus, we can conclude that the steady state temperature will be 9.66
.
Answer:
0.56 g
Explanation:
<em>A chemist determines by measurements that 0.020 moles of nitrogen gas participate in a chemical reaction. Calculate the mass of nitrogen gas that participates.</em>
Step 1: Given data
Moles of nitrogen gas (n): 0.020 mol
Step 2: Calculate the molar mass (M) of nitrogen gas
Molecular nitrogen is a gas formed by diatomic molecules, whose chemical formula is N₂. Its molar mass is:
M(N₂) = 2 × M(N) = 2 × 14.01 g/mol = 28.02 g/mol
Step 3: Calculate the mass (m) corresponding to 0 0.020 moles of nitrogen gas
We will use the following expression.
m = n × M
m = 0.020 mol × 28.02 g/mol
m = 0.56 g
Answer: Mass of
produced in this reaction was 6.56 grams
Explanation:
According to the law of conservation of mass, mass can neither be created nor be destroyed. Thus the mass of products has to be equal to the mass of reactants. The number of atoms of each element has to be same on reactant and product side. Thus chemical equations are balanced.

Mass or reactants = Mass of
+ mass of
= 16.00 + 64.80 = 80.80 g
Mass of products = mass of aqueous solution + mass of
+ = 74.24 + x g
Mass or reactants = Mass of products
80.80 g = 74.24 + x g
x = 6.56 g
Thus mass of
produced in this reaction was 6.56 grams