Answer:
c =0.2 J/g.°C
Explanation:
Given data:
Specific heat of material = ?
Mass of sample = 12 g
Heat absorbed = 48 J
Initial temperature = 20°C
Final temperature = 40°C
Solution:
Specific heat capacity:
It is the amount of heat required to raise the temperature of one gram of substance by one degree.
Formula:
Q = m.c. ΔT
Q = amount of heat absorbed or released
m = mass of given substance
c = specific heat capacity of substance
ΔT = change in temperature
ΔT = 40°C -20°C
ΔT = 20°C
48 J = 12 g×c×20°C
48 J =240 g.°C×c
c = 48 J/240 g.°C
c =0.2 J/g.°C
I'd say he ways about 35 kilograms, but I'm probably wrong, xD
The definition of the speed of light is exactly 299,792,458 meters per second, so to find how far it travels in a time period, multiply the speed of light times the time. Aka c=299,792,458m/s where c is speed of light, m is meters, and s is seconds. So for example to find how far light travels in 5 seconds, multiply by 5.