I am guessing that your solutions of HCl and of NaOH have approximately the same concentrations. Then the equivalence point will occur at pH 7 near 25 mL NaOH.
The steps are already in the correct order.
1. Record the pH when you have added 0 mL of NaOH to your beaker containing 25 mL of HCl and 25 mL of deionized water.
2. Record the pH of your partially neutralized HCl solution when you have added 5.00 mL of NaOH from the buret.
3. Record the pH of your partially neutralized HCl solution when you have added 10.00 mL, 15.00 mL and 20.00 mL of NaOH.
4. Record the NaOH of your partially neutralized HCl solution when you have added 21.00 mL, 22.00 mL, 23.00 mL and 24.00 mL of NaOH.
5. Add NaOH one drop at a time until you reach a pH of 7.00, then record the volume of NaOH added from the buret ( at about 25 mL).
6. Record the pH of your basic HCl-NaOH solution when you have added 26.00 mL, 27.00 mL, 28.00 mL, 29.00 mL and 30.00 mL of NaOH.
7. Record the pH of your basic HCl-NaOH solution when you have added 35.00 mL, 40.00 mL, 45.00 mL and 50.00 mL of NaOH from your 50mL buret.
I believe the answer is C
Answer:

Explanation:
Hello there!
In this case, given the T-V variation, we understand it is possible to apply the Charles' law as shown below:

Thus, since we are interested in the initial temperature, we can solve for T1, plug in the volumes and use T2 in kelvins:

Best regards!
The answer is 303 K, to find K you have to add 273 to the °C
Answer:
Read Below
Explanation:
Electrolysis is not possible with solid lead (II) bromide. This is because the ions are held in a three-dimensional lattice, unable to move freely to the electrodes. Melting enables the ions to become mobile and to travel to the respective electrodes.
The bulb won't glow when the electrodes are embedded in solid lead bromide. The bulb will glow when the material surrounding the electrodes is molten lead bromide. When an ionic compound is in the molten (liquid) form the positive and negative ions are free to move around.
Hopes this Helps :D
Brainiest Please