1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Nimfa-mama [501]
3 years ago
10

Which of the following statements is true?

Physics
1 answer:
Lilit [14]3 years ago
8 0

A. All natural radiation is at a level low enough to be safe

You might be interested in
An oceanographer is studying how the ion concentration in seawater depends on depth. She makes a measurement by lowering into th
Black_prince [1.1K]

Answer:

a)  R = ρ₀ L /π(r_b² - R_a²) , b)  ρ₀ = V / I    π (r_b² - R_a²) / L

Explanation:

a) The resistance of a material is given by

          R = ρ l / A

where ρ is the resistivity, l is the length and A is the area

the length is l = L and the resistivity is ρ = ρ₀

the area is the area of ​​the cylindrical shell

           A = π r_b² - π r_a²

           A = π (r_b² - r_a²)

we substitute

         R = ρ₀ L /π(r_b² - R_a²)

b) The potential difference is related to current and resistance by ohm's law

         V = i R

         

we subsist the expression of resistance

          V = I ρ₀ L /π (r_b² - R_a²)

           ρ₀ = V / I    π (r_b² - R_a²) / L

6 0
3 years ago
A sailboat moves north for a distance of 10.00 km when blown by a wind from the exact south with a force of 5.00 x 10^4 n. how m
Nataliya [291]
Work is defined as the force times the distance which is mathematically expressed W = Fxd. The given force is 5x10^4 and the distance is 10000 m (the distance is converted as meter because Nm = J) the work done by the wind is W = 5x10^4 N (10000) = 500 x 10^6 Joules. I hope it answered your question
8 0
3 years ago
A particle (charge = +0.8 mC) moving in a region where only electric forces act on it has a kinetic energy of 6.7 J at point A.
Maksim231197 [3]

Answer:

The kinetic energy of the particle as it moves through point B is 7.9 J.

Explanation:

The kinetic energy of the particle is:

\Delta K = \Delta E_{p} = q\Delta V

<u>Where</u>:

K: is the kinetic energy

E_{p}: is the potential energy

q: is the particle's charge = 0.8 mC

ΔV: is the electric potential = 1.5 kV                                    

\Delta K = q \Delta V= 0.8 \cdot 10^{-3} C*1.5 \cdot 10^{3} V = 1.2 J

Now, the kinetic energy of the particle as it moves through point B is:

\Delta K = K_{f} - K_{i}

K_{f} = \Delta K + K_{i} = 1.2 J + 6.7 J = 7.9 J

Therefore, the kinetic energy of the particle as it moves through point B is 7.9 J.

I hope it helps you!      

8 0
3 years ago
Two identical silver spheres of mass m and radius r are placed a distance R (sphere 1) and 2R (sphere 2) from the Sun, respectiv
lys-0071 [83]

Answer:

The ratio of T2 to T1 is 1.0

Explanation:

The gravitational force exerted on each sphere by the sun is inversely proporational to the square of the distance between the sun and each of the spheres.

Provided that the two spheres have the same radius r, the pressure of solar radiation too, is inversely proportional to the square of the distance of each sphere from the sun.

Let F₁ and F₂ = gravitational force of the sun on the first and second sphere respectively

P₁ and P₂ = Pressure of solar radiation on the first and second sphere respectively

M = mass of the Sun

m = mass of the spheres, equal masses.

For the first sphere that is distance R from the sun.

F₁ = (GmM/R²)

P₁ = (k/R²)

T₁ = (F₁/P₁) = (GmM/k)

For the second sphere that is at a distance 2R from the sun

F₂ = [GmM/(2R)²] = (GmM/4R²)

P₂ = [k/(2R)²] = (k/4R²)

T₂ = (F₂/P₂) = (GmM/k)

(T₁/T₂) = (GmM/k) ÷ (GmM/k) = 1.0

Hope this Helps!!!

3 0
3 years ago
You are trying to find out how high you have to pitch a water balloon in order for it to burst when it hits the ground. You disc
FrozenT [24]

Answer:

The balloon hit the ground with velocity -15.34 m/s

Explanation:

<em>Lets explain how to solve the problem</em>

You found that the best height to pitch a water balloon in order for it to

burst when it hits the ground is 12 meters.

We consider that the 12 meters is the maximum height, so the velocity

at this height is zero.

To find the velocity when the balloon hits the ground lets use the rule

<em>v² = u² + 2gh</em>, where v is the final velocity, u is the initial velocity, g is

the acceleration of gravity and h is the height.

u = 0 , h = 12 m , g = 9.8 m/s²

<em>Substitute these values in the equation above</em>

v² = 0 + 2(9.8)(12)

v² = 235.2

<em>Take square root for both sides</em>

v = ± \sqrt{235.2}

The velocity is downward, then it's a negative value

Then v = -15.34 m/s

<em>The balloon hit the ground with velocity -15.34 m/s</em>

6 0
3 years ago
Other questions:
  • A 1000-kg whale swims horizontally to the right at a speed of 6.0 m/s. It suddenly collides directly with a stationary seal of m
    6·1 answer
  • A square metal plate of edge length 6.4 cm and negligible thickness has a total charge of 6.6 x 10-6 C. Estimate the magnitude E
    13·1 answer
  • When white light is viewed through sodium vapor in a spectroscope the spectrum is continuous?
    7·2 answers
  • One of the harmonics on a string 1.30m long has a frequency of 15.60 Hz. The next higher harmonic has a frequency of 23.40 Hz. F
    7·1 answer
  • 2. Which one of the following calculations could be used to find the
    14·1 answer
  • What is the key point from the kennedy-nixon debate​
    5·1 answer
  • A cannon of mass 5.71 x 103 kg is rigidly bolted to the earth so it can recoil only by a negligible amount. The cannon fires a 7
    15·1 answer
  • Where is the most deposition most likely to occur?
    10·1 answer
  • Plants make ___________ using carbon dioxide, water and energy from the sun.
    6·1 answer
  • A scientist in Northern California is studying the tree rings of a very old redwood tree. He notices that the oldest tree rings
    11·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!