<span>Assume: neglect of the collar dimensions.
Ď_h=(P*r)/t=(5*125)/8=78.125 MPa ,Ď_a=Ď_h/2=39 MPa
τ=(S*Q)/(I*b)=(40*〖10〗^3*π(〖0.125〗^2-〖0.117〗^2 )*121*〖10〗^(-3))/(π/2 (〖0.125〗^4-〖0.117〗^4 )*8*〖10〗^(-3) )=41.277 MPa
@ Point K:
Ď_z=(+M*c)/I=(40*0.6*121*〖10〗^(-3))/(8.914*〖10〗^(-5) )=32.6 MPa
Using Mohr Circle:
Ď_max=(Ď_h+Ď_a)/2+âš(Ď„^2+((Ď_h-Ď_a)/2)^2 )
Ď_max=104.2 MPa, Ď„_max=45.62 MPa</span>
Nearly equal the output work is greater than the input work because of friction.All machines use some amount of input work to overcome friction.The only way to increase the work output is to increase the work you put into the machine.You cannot get more work out of a machine than you put into it.
The main difference is the source of the sediment that the rock is formed from. Clastic sedimentary rocks are formed mostly from silicate sediment derived by the breakdown of pre-existing rocks. Bioclastic rocks are formed by the accumulation of fragmented organic remains (such as shell-sand) - i.e. the sediment is of biological rather than non-biological origin.
The equation for work (W) done by an electric field is:
W = qΔV
where q is the magnitude of the charge and ΔV is the potential difference. The question gives you W and q, so plug n' play to find ΔV:
10 = 2ΔV
ΔV = 5