Answer:
ooh sorry, but will this help you now:
Ocean dynamics define and describe the motion of water within the oceans. Ocean temperature and motion fields can be separated into three distinct layers: mixed (surface) layer, upper ocean (above the thermocline), and deep ocean. Ocean currents are measured in sverdrup (sv), where 1 sv is equivalent to a volume flow rate of 1,000,000 m (35,000,000 cu ft) per second.
Surface currents, which make up only 8% of all water in the ocean, are generally restricted to the upper 4…
Explanation:
Hope this helps :)
I would say 4 but you can figure it out or if you have a parent near by to
Answer:
0.645 L
Explanation:
To find the volume, you need to (1) convert grams to moles (using the molar mass) and then (2) calculate the volume (using the molarity ratio). The final answer should have 3 sig figs to match the sig figs of the given values.
(Step 1)
Molar Mass (KOH): 39.098 g/mol + 15.998 g/mol + 1.008 g/mol
Molar Mass (KOH): 56.104 g/mol
19.9 grams KOH 1 mole
-------------------------- x ----------------------- = 0.355 moles KOH
56.014 grams
(Step 2)
Molarity = moles / volume <----- Molarity ratio
0.550 M = 0.355 moles / volume <----- Insert values
(0.550 M) x volume = 0.355 moles <----- Multiply both sides by volume
volume = 0.645 L <----- Divide both sides by 0.550
Answer:
CH2O
Explanation:
Firstly, we need to convert the masses of the elements to percentage compositions. This can be done by placing the mass of each element over the total mass multiplied by 100% . We can start with carbon.
C = 5.692/14.229 * 100 = 40%
O = 7.582/14.229 * 100 = 53.29%
H = 0.955/14.229 * 100 = 6.71%
We then proceed to divide each percentage composition by their atomic mass of 12, 16 and 1 respectively.
C = 40/12 = 3.333
O = 53.29/16 = 3.33
H = 6.71/2 = 6.71
Dividing by the smaller value which is 3.33
C = 3.33/3.33 = 1
O = 3.33/3.33= 1
H = 6.71/3.33 = 2
The empirical formula of the compound ribose is CH2O