Answer:
- tension: 19.3 N
- acceleration: 3.36 m/s^2
Explanation:
<u>Given</u>
mass A = 2.0 kg
mass B = 3.0 kg
θ = 40°
<u>Find</u>
The tension in the string
The acceleration of the masses
<u>Solution</u>
Mass A is being pulled down the inclined plane by a force due to gravity of ...
F = mg·sin(θ) = (2 kg)(9.8 m/s^2)(0.642788) = 12.5986 N
Mass B is being pulled downward by gravity with a force of ...
F = mg = (3 kg)(9.8 m/s^2) = 29.4 N
The tension in the string, T, is such that the net force on each mass results in the same acceleration:
F/m = a = F/m
(T -12.59806 N)/(2 kg) = (29.4 N -T) N/(3 kg)
T = (2(29.4) +3(12.5986))/5 = 19.3192 N
__
Then the acceleration of B is ...
a = F/m = (29.4 -19.3192) N/(3 kg) = 3.36027 m/s^2
The string tension is about 19.3 N; the acceleration of the masses is about 3.36 m/s^2.
Answer:
R=m*g-∀fl*g*l3
Explanation:
<em>An iron block of density rhoFe and of volume l 3 is immersed in a fluid of density rhofluid. The block hangs from a scale which reads W as the weight. The top of the block is a height h below the surface of the fluid. The correct equation for the reading of the scale is</em>
From Archimedes' principle we know that a body when immersed in a fluid, fully or partially, experiences an the upward buoyant force equal to the weight of the fluid displaced. As the body is fully submerged in water, volume of water displaced
density of iron =mass/ volume
rho=m/l3
mass=rhol3
weight fluid=rhofluid*g*Volume
weight of fluid=rhofluid*g*l3
F=∀fl*g*l3
Downward force is weight of iron
w=m*g
Reading on the spring scale
R=w-F
R=m*g-∀fl*g*l3
m=mass of iron
g=acceleration due to ravity
rhfld=density of fluid
l3=volume of fluid displaced
If a bus travels 30 km in 1/2 hr, then in one hr, he can travel twice the distance.
30*2=60 km
Final answer: 60 km per hr
<span>Ocean currents act much like a conveyer belt,
transporting warm water and precipitation from the equator toward the
poles and cold water from the poles back to the tropics. Thus, currents
regulate global climate, helping to counteract the uneven distribution of solar radiation reaching Earth's surface.</span>
Answer:
<u><em>a. True</em></u>
Explanation:
<em>Vectors are an important part of the language of science, mathematics, and engineering.</em>