Answer:
If a chord had notes with frequencies of 100, 1,000, and 6,000 Hz, the basilar membran would vibrate at multiple positions, with peaks at A, B, and C.
Explanation:
Answer:
The height of the Everest mountain is, x = 8514.087 m
Explanation:
Given data,
The gravitational field strength at the top of mount Everest, gₓ = 9.772 m/s²
The formula for gravitational field strength is,
<em> gₓ = GM/(R+x)²</em>
Where, x is the height from the surface of the Earth
Therefore,
(R+x)² = GM/gₓ
x = √(GM/gₓ) - R
Substituting the values,
x = √(6.67408 x 10⁻¹¹ X 5.972 x 10²⁴ / 9.772) - 6.378 x 10⁶
x = 8514.087 m
Therefore, the height of the Everest mountain is, x = 8514.087 m
The answer should be ''all the above''
Hello There!
<em>If you add together all of the forces exerted on a object and get a non zero value that is called the "NET FORCE" of the object</em>
Answer:
s=4.44 m
Explanation:
Given that
Coefficient of the kinetic friction ,μ = 0.13
Initial velocity ,u= 3.4 m/s
Final velocity of the box ,v= 0 m/s
The acceleration due to friction force
a= - μ g
Now by putting the values in the above equation
a= - 0.13 x 10 ( take g= 10 m/s²)
a= - 1.3 m/s²
We know that
v²= u ² + 2 a s
s=distance
a=acceleration
v=final speed
u=initial speed
Now by putting the values in the above equation
0²= 3.4² - 2 x 1.3 x s

s=4.44 m
The distance cover by box will be 4.44 m.