Answer:
You could use newton’s second law to calculate the force applied to an object if you knew the objects mass and its <u>acceleration.</u>
Explanation:
By, Newtons second law, the force applied on an object directly varies with the acceleration caused and the mass of the object.
This is given by :

Where
represents force applied on the object ,
represents mass of the object and
represents the acceleration.
In order to calculate force applied on object we require the mass of the object and its acceleration. The force can be calculated by finding the product of mass and acceleration of the object.
There is a repulsive force between two charged objects when they are of like charges/ they are likely charged (like charges repel each other)
Answer:
SURE!!!...
But what to calculate!!!....
Answer: 0.0146m
Explanation: The formula that defines the velocity of a simple harmonic motion is given as
v = ω√A² - x²
Where v = linear velocity, A = amplitude = 1.69cm = 0.0169m, x = displacement.
The maximum speed of a simple harmonic motion is derived when x = A, hence v = ωA
One half of maximum speed = speed of motion
3ωA/2 = ω√A² - x²
ω cancels out on both sides of the equation, hence we have that
A/2 = √A² - x²
(0.0169)/2 = √(0.0169² - x²)
0.00845 = √(0.0169² - x²)
By squaring both sides, we have that
0.00845² = 0.0169² - x²
x² = 0.0169² - 0.00845²
x² = 0.0002142
x = √0.0002142
x = 0.0146m
A. Getting a full set of valence electrons
Explanation:
The best description of the end result of chemical bonding for most atoms is the getting of a full set of valence electrons.
Atoms reacts with one another in order to complete valence electronic shell.
- The valence electron shell is the outermost energy level of an atom.
- It is from this energy level that electrons are lost or gained to form bonds.
- All atoms wants to be like the noble gases whose valence electronic shell is completely filled up
- This is the crux of chemical bonding
- The attraction that is produced from the interaction leads to bond formation
learn more:
Chemical bond brainly.com/question/10903097
#learnwithBrainly