It depends on your definition of “ancient.” Radiometric dating using Carbon-14 can reliably date back to about 50,000 years, uranium-lead or lead-lead dating can date back multiple millions, potassium-argon dating can reach 1.5 billion, and rubidium-strontium can reach 50 billion (nearly 4x the age of the universe). It depends on the context in which this question is being asked.
<span>Convert angstroms to nm for atom diameter
2.18/10=.218 nm. Divide diameter by length width and height.
63.6/.218=292
74.2/.218=327
275/.218=1261
Multiply these to get volume of atoms
120,037,500
Convert atoms to moles using Avogadro number
120,037,500/6.02*10^23=2*10^-16 moles</span>
Refer to the diagram shown below.
Assume that
(a) The piano rolls down on frictionless wheels,
(b) Wind resistance is negligible.
The distance along the ramp is
d = (1.3 m)/sin(22°) = 3.4703 m
The component of the piano's weight along the ramp is
mg sin(22°)
If the acceleration down the ramp is a, then
ma = mg sin(22°)
a = g sin(22°) = (9.8 m/s²) sin(22°) = 3.671 m/s²
The time, t, to travel down the ramp from rest is given by
(3.4703 m) = 0.5*(3.671 m/s²)*(t s)²
t² = 3.4703/1.8355 = 1.8907
t = 1.375 s
Answer: 1.375 s
Gases do not conduct heat well.
The position compared to that of home is a reference to displacement, I believe.
Displacement = x total - x initial
So I believe the answer is 5 blocks due north (if you’re walking linearly from your home), unless the questions is referring to relative displacement, in which then you’d need to use the Pythagorean theorem to find the hypotenuse between both positions. And then you’d have to find theta for the degrees between the south direction and the other unmentioned direction. But I don’t think that’s the case.
Distance refers to x total and doesn’t care for direction, as this refers to a scalar quantity opposed to a vector. Thus the equation is just
d = x
So 8 blocks + 3 blocks = a distance of eleven blocks walked total