Answer:
<u>B. the stars of spectral type A and F are considered reasonably to have habitable planets but much less likely to have planets with complex plant - or animal - like life.</u>
Explanation:
The appropriate spectral range for habitable stars is considered to be "late F" or "G", to "mid-K" or even late "A". <em>This corresponds to temperatures of a little more than 7,000 K down to a little less than 4,000 K</em> (6,700 °C to 3,700 °C); the Sun, a G2 star at 5,777 K, is well within these bounds. "Middle-class" stars (late A, late F, G , mid K )of this sort have a number of characteristics considered important to planetary habitability:
• They live at least a few billion years, allowing life a chance to evolve. <em>More luminous main-sequence stars of the "O", "B", and "A" classes usually live less than a billion years and in exceptional cases less than 10 million.</em>
• They emit enough high-frequency ultraviolet radiation to trigger important atmospheric dynamics such as ozone formation, but not so much that ionisation destroys incipient life.
• They emit sufficient radiation at wavelengths conducive to photosynthesis.
• Liquid water may exist on the surface of planets orbiting them at a distance that does not induce tidal locking.
<u><em>Thus , the stars of spectral type A and F are considered reasonably to have habitable planets but much less likely to have planets with complex plant - or animak - like life.</em></u>
<em><u>One</u></em><em><u> </u></em><em><u>newton</u></em><em><u> </u></em><em><u>force</u></em><em> </em><em>is</em><em> </em><em>defined as t</em><em>h</em><em>e</em><em> </em><em>force</em><em> </em><em>that</em><em> </em><em>is</em><em> necessary to provide a mass of one kilogram with an acceleration of one metre per second per second. One newton is equal to a force of 100,000 dynes in the centimetre-gram-second (CGS) system, or a force of about 0.2248 pound </em><em>i</em><em>n</em><em> </em><em>the</em><em> </em><em>f</em><em>o</em><em>o</em><em>t</em><em>-</em><em>p</em><em>o</em><em>u</em><em>n</em><em>d</em><em>-</em><em> </em><em>s</em><em>e</em><em>c</em><em>o</em><em>n</em><em>d</em><em> </em><em>system</em><em>.</em>
Answer:
because it’s suppose to be red like a stop light.
Explanation:
So it tells you to stop
Explanation:
Q = CV
where C = capacitance
V = potential difference
Solving for C,
C = Q/V = (9.6×10^-9)(120 v)
= 1.15 microFarads