Answer:
time of collision is
t = 0.395 s

so they will collide at height of 5.63 m from ground
Explanation:
initial speed of the ball when it is dropped down is

similarly initial speed of the object which is projected by spring is given as

now relative velocity of object with respect to ball

now since we know that both are moving under gravity so their relative acceleration is ZERO and the relative distance between them is 6.4 m



Now the height attained by the object in the same time is given as



so they will collide at height of 5.63 m from ground
Point A has the largest magnitude of acceleration as compared to other points on the position verses time graph.
On the graph, A is the point where magnitude of the acceleration of the particle is greatest as compared to other positions on the graph because the height of point A is the largest as compared to other points of the graph.
The graph shows at which point acceleration of an object is higher and lower so we can conclude that point A has the largest magnitude of acceleration as compared to other points on the position verses time graph.
Learn more about acceleration here: brainly.com/question/933224
Learn more: brainly.com/question/25887663
I believe the answer would be mass. Low mass stars and medium mass stars often become white dwarfs when they die while high mass stars explode in violent explosions called supernovas and usually leave behind a black hole or a neutron star.