Complete Question:
In the same configuration of the previous problem 3, four long straight wires are perpendicular to the page, and their cross sections form a square of edge length a = 13.5 cm. Each wire carries 7.50 A, and the currents are out of the page in wires 1 and 4 and into the page in wires 2 and 3.
a) Draw a diagram in a (x,y) plane of the four wires with wire 4 perpendicular to the origin. Indicate the current's directions.
b) Draw a diagram of all magnetic fields produced at the position of wire 3 by the other three currents.
c) Draw a diagram of all magnetic forces produced at the position of wire 3 by the other three currents.
d) What are magnitude and direction of the net magnetic force per meter of wire length on wire 3?
Answer:
force, 1.318 ₓ 10⁻⁴
direction, 18.435°
Explanation:
The attached file gives a breakdown step by step solution to the questions
Answer:
22.2 W
Explanation:
First of all, we calculate the work done by moving the wagon, using the formula:

where
F = 20 N is the magnitude of the force
d = 1000 m is the displacement of the wagon
is the angle between the direction of the force and of the displacement (assuming the force is applied in the direction of motion)
Substituting, we find

Now we can find the power generated, which is equal to the ratio between the work done and the time taken:

where
W = 20,000 J
t = 15 min = 900 s
Substituting,

And the same value in Joules/second (remember that 1 Watt = 1 Joule/second)
Answer:
Revolving nosepiece
Explanation:
The revolving nosepiece is one of the parts of a microscope, used for holding the objective lenses. They can be turned to put a particular objective lens in place to be used in order to vary magnification.
Answer:
Explanation:
side of the square loop, a = 7 cm
distance of the nearest side from long wire, r = 2 cm = 0.02 m
di/dt = 9 A/s
Integrate on both the sides

i = 9t
(a) The magnetic field due to the current carrying wire at a distance r is given by


(b)
Magnetic flux,





(c)
R = 3 ohm

magnitude of voltage is
e = 1.89 x 10^-7 V
induced current, i = e / R = (1.89 x 10^-7) / 3
i = 6.3 x 10^-8 A