1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
dlinn [17]
3 years ago
14

A parking lot has two entrances. Cars arrive at entrance I according to a Poisson distribution at an average of 3 per hour and a

t entrance II according to a Poisson distribution at an average of 2 per hour. What is the probability that a total of 3 cars will arrive at the parking lot in a given hour? What is the probability that less than 3 cars will arrive at the parking lot in a given hour? (Assume that the numbers of cars arriving at the two entrances are independent. (Note: The probability mass function of Poisson distribution is p(x) = (e^-λ * λ^x)/(x!) for x = 0,1,2, ..., , where λ is the parameter which indicates the average number of events in the given time interval.)
Mathematics
2 answers:
alina1380 [7]3 years ago
7 0

Answer:

Step-by-step explanation:

Given that a parking lot has two entrances. Cars arrive at entrance I according to a Poisson distribution at an average of 3 per hour and at entrance II according to a Poisson distribution at an average of 2 per hour.

Assuming the number of cars arriving at the two parking lots are independent we have total number of cars arriving X is Poisson with parameter 3+2 = 5

X is Poisson with mean = 5

the probability that a total of 3 cars will arrive at the parking lot in a given hour

= P(X=3) = 0.1404

b)  the probability that less than 3 cars will arrive at the parking lot in a given hour

= P(X<3)

= P(0)+P(1)+P(2)

= 0.1247

lys-0071 [83]3 years ago
6 0

Answer:

(a) the probability that a total of 3 cars will arrive at the parking lot in a given hour is 0.1404.

(b) The probability that less than 3 cars will arrive at the parking lot in a given hour is 0.1247.

Step-by-step explanation:

Let <em>X</em> = cars arriving through entrance I and <em>Y</em> = cars arriving through entrance II.

<u>Given:</u>

X\sim Poisson(3)\\Y\sim Poisson (2)

The probability function of a Poisson distribution is:

P(U=u)=\frac{\lambda^{u}e^{-\lambda}}{u!}

It is also provided that the events <em>X</em> and <em>Y</em> are independent.

Let <em>U </em>= <em>X</em> + <em>Y</em>

Then E (U) = E (X) + E(Y) = 3 + 2 = 5.

The random variable <em>U</em><em> </em>also follows a Poisson distribution with parameter <em>λ</em> = 5

(a)

The probability that a total of 3 cars will arrive at the parking lot in a given hour is:

P(U=3)=\frac{5^{3}e^{-5}}{3!}\\=\frac{125\times0.00674}{6} \\=0.1404

Thus, the probability that a total of 3 cars will arrive at the parking lot in a given hour is 0.1404.

(b)

The probability that less than 3 cars will arrive at the parking lot in a given hour is:

P(U

Thus, the probability that less than 3 cars will arrive at the parking lot in a given hour is 0.1247.

You might be interested in
A local pet store sells a variety of animal supplies and pet accessories. The pet store has different sections for dogs, cats, b
Debora [2.8K]
The answer is d for this problem
8 0
3 years ago
30 PTS 30 PTS 30 PTS 30 PTS
wariber [46]
1 and 2 are equations and 3 is a solution
5 0
3 years ago
Read 2 more answers
Which data set contains an outlier?
Bezzdna [24]

The data set which contains an outlier from the given answer choices is; Choice D; {16, 42, 45, 45, 46, 48}.

<h3>What is an outlier?</h3>

An outlier in a set of data values is a data value which differs significantly from other data points and hence, tends to affect the mean of such set of data values significantly.

On this note, choice D is the set of data values which contains an outlier.

Read more on outliers;

brainly.com/question/2749543

#SPJ1

4 0
2 years ago
Solve this using square roots and show your work please<br> 4x^2-256=0
mamaluj [8]

Answer:

x = ± 8

Step-by-step explanation:

Given

4x² - 256 = 0 ( add 256 to both sides )

4x² = 256 ( divide both sides by 4 )

x² = 64 ( take the square root of both sides )

x = ± \sqrt{64} = ± 8

Solutions are x = - 8, x = 8

5 0
3 years ago
Inqualities question pls help!
Margaret [11]

Answer:

B

Step-by-step explanation:

The closed circle at - \frac{3}{2} indicates that x can equal this value

The open circle at \frac{7}{2} indicates that x cannot equal this value.

All values of x between - \frac{3}{2} and \frac{7}{2} are valid, thus

- \frac{3}{2} ≤ x < \frac{7}{2} → B

5 0
3 years ago
Other questions:
  • Does Kerri's dot plot match the data in the tally
    7·1 answer
  • Which of the binomials below is a factor of this trinomial?
    9·2 answers
  • A tree casts a 12 foot shadow while the sun is at an angle of elevation of 58º. Use
    13·1 answer
  • Plz help me!!! I need this answered correctly and with explanation!!! <br> Solve z/−8 ≥ −0.25
    7·2 answers
  • I need to find the value of x!!!
    10·1 answer
  • Drag numbers to the table so it shows a proportional relationship between x and y.
    10·1 answer
  • A toy factory makes 15 teddy bears every 10 minutes. The factory makes teddy bears for 8 hours each work day. What is the fewest
    10·1 answer
  • Determine if a 25 inch long stick can fit into the bottom of a box that is 20 inches long and 16 inches wide. Support your answe
    13·2 answers
  • 1.
    10·2 answers
  • Write the equation of the line that passes through the points (7, –9)
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!