Using ideal gas equation,

Here,
P denotes pressure
V denotes volume
n denotes number of moles of gas
R denotes gas constant
T denotes temperature
The values at STP will be:
P=1 atm
T=25 C+273 K =298.15K
V=663 ml=0.663L
R=0.0821 atm L mol ⁻¹
Mass of gas given=1.25 g g
Molar mass of gas given=?


Putting all the values in the above equation,

Molar mass of the gas=46.15
Answer:
they are equal.
Explanation:
1 mol = 6.022 × 10^23 (Avogadro's constant), which is the number of atoms in 1 mol of any element. Doesn't matter what their atomic mass is, although, of course, 1 mol of carbon weighs less than 1 mol of calcium, but its because their mass is different, but the point is, in 1 mol of any element there is 6.03*10^23 atoms
This is like saying, what weighs more, 10 kg of feathers or 10 kg of metal
People use data tables and graphs in many financial careers and when looking at the statistics for something as simple as what they saw on the news, etc. When scientists use them, they’re both using them to see the numbers and the facts. They’re both able to use graphs and data tables to help them. They are different though because scientists use them for science related things like how much a tree grew in a year while everyday people use them to see the average amount of drop outs per year or something along those lines.
Data tables and graphs are very vital to a scientists job. They help them easily collect and organize information to where anyone can read it. It may not be absolutely necessary, but it’s something every scientist uses.
Any scientist doing any sort of research would use them. Whether they’re a biologist, geologist or whatever, they all use graphs and data tables to help them organize their research.
U literally put all yo information on their
Answer:
Number of moles of chlorine = 3.38 mol
Explanation:
Given data:
Mass of chlorine = 120 g
Moles of chlorine = ?
Solution:
Formula:
Number of moles = mass/molar mass
Molar mass of chlorine = 35.5 g/mol
Now we will put the values in formula.
Number of moles = 120 g/ 35.5 g/mol
Number of moles = 3.38 mol