Answer:
hi 5th grader, stop trying to cheat :)
Explanation:
Answer:
C
Explanation:
I picked C because the plant is interacting with the sun which is a nonliving part of the environment.
A, B and D are wrong because seaweed, horses, and trees are living things.
Answer:
The mass in grams of glucose produced when 132.0 g of CO2 reacts with an excess of water is 90.1 grams
Explanation:
The chemical equation for the reaction is
6H₂O + 6CO₂ → C₆H₁₂O₆ + 6O₂
From the reaction, it is seen that 6 moles of H₂O reacts ith 6 moles of CO₂ to produce 1 mole of glucose C₆H₁₂O₆ and 6 moles oxygen gas
The molar mass of CO₂ = 44.01 g/mol
There fpre 132.0 g contains 132.0/44.01 moles or ≅ 3 moles
However since 6 moles of CO₂ produces 1 mole of O₂, then 3 moles of CO₂ will prduce 1/6×3 or 0.5 moles of C₆H₁₂O₆
and since the molar mass (or the mass of one mole) of C₆H₁₂O₆ is 180.2 grams/mole then 0.5 mole of C₆H₁₂O₆ will have a mass of
mass of 1 mole C₆H₁₂O₆ = 180.2 g
mass of 0.5 mole C₆H₁₂O₆ = 180.2 g × 0.5 = 90.1 grams
Mass of glucose produced = 90.1 grams
<u>Answer:</u> The standard potential of the cell is 0.77 V
<u>Explanation:</u>
We know that:

The substance having highest positive
reduction potential will always get reduced and will undergo reduction reaction.
The half reaction follows:
<u>Oxidation half reaction:</u> 
<u>Reduction half reaction:</u>
( × 2)
To calculate the
of the reaction, we use the equation:

Substance getting oxidized always act as anode and the one getting reduced always act as cathode.
Putting values in above equation follows:

Hence, the standard potential of the cell is 0.77 V