Answer:
Ionic character
A. PF₃ > PBr₃ > PCl₃
B. BF₃ > CF₄ > NF₃
C. TeF₄ > BrF₃ > SeF₄
Explanation:
The most electronegative element is fluorine, followed chlorine, phosphorous nitrogen etc.
- Atoms with high electronegativity tend to form negative ions.
- Ionic compounds formed between elements with high electronegativity difference.
- % ionic character is directly proportional to electronegativity difference.
- According to Pauling Scale E.n for F(4.0), O(3.5), N(3.0), C(2.5), B(2.0), P(2.19), Se(2.55) , Te (2.1), Cl(3.16) and Br(2.96)
- ΔE.N (Electronegativity difference) between( P and F = 4 - 2.19 = 1.81), (P and Br = 2.96 - 2.19 = 0.77) , (P and Cl = 3.16 - 2.96 = 0.2 )
- ΔE.N (Electronegativity difference) between( N and F = 4 - 3 = 1), (B and F = 4 - 2 = 2) , (C and F = 4 - 2.5 = 1.5 )
- ΔE.N (Electronegativity difference) between( Se and F = 4 - 2.55 = 1.45), (F and Te = 4 - 2.1 = 1.9) , (F and Br = 4 - 2.19 = 1.81 )
Answer:
449 (g K) / 39.1 (g/mol K) = 11.5 mol K
Explanation:
Potassium has atomic number 39.1
amount of K in 449g sample = 449/39.1 = 11.5 mol
Answer:
Explanation:
For a fixed mass of an ideal gas kept at a fixed temperature, pressure and volume are inversely proportional. Or Boyle's law is a gas law, stating that the pressure and volume of a gas have an inverse relationship. If volume increases, then pressure decreases and vice versa, when the temperature is held constant.
5 electrons
Boron atomic number 5 has five electrons in its ground state.
Commonly Boron will lose 3 electrons leaving 2 electrons in its most common ionic form.
Explanation:
The atomic number gives the number of protons. Protons which have a positive charge are balanced by an equal number of electrons in a neutral atom.
Boron number 5 has five protons and therefore as a neutral atom also has five electrons.
Boron has an electron configuration of
1s22s22p1
The most stable electron configuration for Boron is
1s2
+ 3 charges. By losing three electrons Boron can achieve the stable electron structure of Helium
Brainliest? :D