Answer:
an increase in 1-butene was observed when t-butoxide was used
Explanation:
When a base reacts with an alkyl halide, an elimination product is formed. This reaction is an E2 reaction.
Here we are to compare the reaction of two different bases with one substrate; 2-bromobutane. Both reactions occur by the E2 mechanism but follow different transition states due to the size of the base.
The Saytzeff product, 2-butene, is obtained when the methoxide is used while the non Saytzeff product, 1-butene, is obtained when t-butoxide is used.
The Saytzeff rule is reliable in predicting the major products of simple elimination reactions of alkyl halides given the fact that a small/strong bases is used for the elimination reaction. Therefore hydroxide, methoxide and ethoxide bases give similar results for the same alkyl halide substrate. Bulky bases such as tert-butoxide tend to yield a higher percentage of the non Saytzeff product and this is usually attributed to steric hindrance.
Higher. Because this type of heat transfer is conduction, meaning that heat always transfers to cooler objects.
3
Explanation:
Number 1 and 2, Are good things.
if one is decreasing and the other is benefiting. Otherwise, Here as number 3.
Some examples of malleable materials are gold, silver, iron, aluminum, copper and tin.
Answer:
The molecular formula of cacodyl is C₄H₁₂As₂.
Explanation:
<u>Let's assume we have 1 mol of cacodyl</u>, in that case we'd have 209.96 g of cacodyl and the<u> following masses of its components</u>:
- 209.96 g * 22.88/100 = 48.04 g C
- 209.96 g * 5.76/100 = 12.09 g H
- 209.96 g * 71.36/100 = 149.83 g As
Now we convert those masses into moles:
- 48.04 g C ÷ 12 g/mol = 4.00 mol C
- 12.09 g H ÷ 1 g/mol = 12.09 mol H
- 149.83 g As ÷ 74.92 g/mol = 2.00 mol As
Those amounts of moles represent the amount of each component in 1 mol of cacodyl, thus, the molecular formula of cacodyl is C₄H₁₂As₂.