Answer:
Molecular formula of aniline is C6H5NH2.
Explanation:
As we know, molecular mass can be calculated as
Molar mass = C6H5NH2
Molar mass = (6*12)+(1*7)+(28)
Molar mass = 93 g/mol
Answer:
Photosynthesis
Explanation:
Carbon cycle involves the exchange of components between the hydrosphere, biosphere and atmosphere. During carbon cycle, materials such as gases, minerals which are necessary for life are interchange. For example, animals pass out faeces on the soil which is rich in urea. Urea decomposes to provide nitrogen into the soil through bioactive bacterials. The nitrogen is used up by plants to grow. During photosynthesis, plants uses carbon dioxide and water to produce glucose and release oxygen for animals to use. It's like a purification system where one waste product from one organism is used by the other to survive.
Equation of photosynthesis
6CO₂ + 6H₂O → C₆H₁₂O₆ + 6O₂.
Temperature decreases (?)
Answer:
d. there is a net consumption of water and carbon dioxide
Explanation:
Photosynthesis, is the process whereby light energy is transform into chemical energy by
green plants and other photosynthesis capable organisms . In the process of photosynthesis, light energy is captured by green plants which it uses to convert carbon dioxide water, and minerals into energy-rich organic compounds and oxygen is evolved as a byproduct.
It is a chemical reaction taking place inside a plant, resulting in the production of food for the survival of the plant.
Photosynthesis takes place in the leaves of a plant in the presence of sunlight and.
A positive cahnge of enthalpy, ΔH rxn = + 55 kJ/mol, for the forward reaction means that the reaction is endothermic, i.e. the reactants absorb energy and the products are higher in energy.
Activation energy is the difference in the energy level of the reactants and the peak in the potential energy diagram (the energy of the transition state).
For an endothermic reaction, the products will be closer in energy to the transition state than what the reactans will be; so, the activation energy of the reversed reaction is lower than the activation energy of the forward reaction.
Activation energy of reverse and forward reactions is related by:
Activation energy of reverse rxn = Activation energy of forward rxn - ΔH rxn
=> Activiation energy of reverse rxn = 102 kJ/mol - 55 kJ/mol = 47 kJ/mol
Answer: 47 kJ/mol