Baloon with 3 moles og oxygen at 1 atm.The temperature of the balloon is <u>4 Kelvin</u>.
An ideal gas is a theoretical gas composed of many randomly transferring factor particles that aren't difficult to interparticle interactions. the best gasoline idea is beneficial because it obeys the precise gas law, a simplified equation of country, and is amenable to evaluation under statistical mechanics.
An ideal gas is described as one for which both the extent of molecules and forces between the molecules are so small that they have got no effect at the behavior of the gas. The real gas that acts almost like a really perfect gasoline is helium. that is due to the fact helium, in contrast to maximum gases, exists as an unmarried atom, which makes the van der Waals dispersion forces as low as viable
Using the ideal gas equation:-
Given;
P₁ = 1 atm
V₁ = 100 L
n = 3
r = 8.314
T = PV/nR
= 1 × 100 / 3 × 8.314
= 4 K
Learn more about ideal gas here:-brainly.com/question/20348074
#SPJ4
Answer:
No precipitate is formed.
Explanation:
Hello,
In this case, given the dissociation reaction of magnesium fluoride:

And the undergoing chemical reaction:

We need to compute the yielded moles of magnesium fluoride, but first we need to identify the limiting reactant for which we compute the available moles of magnesium chloride:

Next, the moles of magnesium chloride consumed by the sodium fluoride:

Thus, less moles are consumed by the NaF, for which the moles of formed magnesium fluoride are:

Next, since the magnesium fluoride to magnesium and fluoride ions is in a 1:1 and 1:2 molar ratio, the concentrations of such ions are:
![[Mg^{2+}]=\frac{3x10^{-4}molMg^{+2}}{(0.3+0.5)L} =3.75x10^{-4}M](https://tex.z-dn.net/?f=%5BMg%5E%7B2%2B%7D%5D%3D%5Cfrac%7B3x10%5E%7B-4%7DmolMg%5E%7B%2B2%7D%7D%7B%280.3%2B0.5%29L%7D%20%3D3.75x10%5E%7B-4%7DM)
![[F^-]=\frac{2*3x10^{-4}molMg^{+2}}{(0.3+0.5)L} =7.5x10^{-4}M](https://tex.z-dn.net/?f=%5BF%5E-%5D%3D%5Cfrac%7B2%2A3x10%5E%7B-4%7DmolMg%5E%7B%2B2%7D%7D%7B%280.3%2B0.5%29L%7D%20%3D7.5x10%5E%7B-4%7DM)
Thereby, the reaction quotient is:

In such a way, since Q<Ksp we say that the ions tend to be formed, so no precipitate is formed.
Regards.
Answer:
441.28 g Oxygen
Explanation:
- The combustion of hydrogen gives water as the product.
- The equation for the reaction is;
2H₂(g) + O₂(g) → 2H₂O(l)
Mass of hydrogen = 55.6 g
Number of moles of hydrogen
Moles = Mass/Molar mass
= 55.6 g ÷ 2.016 g/mol
= 27.8 moles
The mole ratio of Hydrogen to Oxygen is 2:1
Therefore;
Number of moles of oxygen = 27.5794 moles ÷ 2
= 13.790 moles
Mass of oxygen gas will therefore be;
Mass = Number of moles × Molar mass
Molar mass of oxygen gas is 32 g/mol
Mass = 13.790 moles × 32 g/mol
<h3> = 441.28 g</h3><h3>Alternatively:</h3>
Mass of hydrogen + mass of oxygen = Mass of water
Therefore;
Mass of oxygen = Mass of water - mass of hydrogen
= 497 g - 55.6 g
<h3> = 441.4 g </h3>
H20. 2 of hydrogen and oxygen