Answer:
0.120M is the concentration of the solution
Explanation:
<em>Assuming the mass of sodium nitrate dissolved was 2.552g</em>
<em />
Molar concentration is an unit of concentration widely used in chemsitry defined as the moles of solute (In this case NaNO3) in 1L of solution.
To find this question we must find the moles of NaNO3 in 2.552g. With this mass and the volume (250mL = 0.250L) we can find molar concentration as follows:
<em>Moles NaNO3 -Molar mass: 84.99g/mol-</em>
2.552g * (1mol / 84.99g) = 0.0300 moles NaNO3
<em>Molar concentration:</em>
0.0300 moles NaNO3 / 0.250L =
<h3>0.120M is the concentration of the solution</h3>
Compound: a thing that is composed of two or more separate elements, basically it is a mixture
Mixture: a substance made by mixing other substances together
so go from there. I don't want to cheat by giving answers, so I hope this is guiding and helpful. please mark brainliest if it is!
Answer:
2.76 × 10⁻¹¹
Explanation:
I don’t have access to the ALEKS Data resource, so I used a different source. The number may be different from yours.
1. Calculate the free energy of formation of CCl₄
C(s)+ 2Cl₂(g)→ CCl₄(g)
ΔG°/ mol·L⁻¹: 0 0 -65.3
ΔᵣG° = ΔG°f(products) - ΔG°f(reactants) = -65.3 kJ·mol⁻¹
2. Calculate K

T = (25.0 + 273.15) K = 298.15 K
