1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
marysya [2.9K]
3 years ago
10

In the example of jumping off a chair, what is the impulse that will stop your fall?

Physics
1 answer:
liq [111]3 years ago
5 0

Answer:

You will reach both your arms out to break your fall and save your head.

Explanation:

It common sense you don't want your head injured. Do you?

You might be interested in
The collision between a hammer and a nail can be considered to be approximately elastic. estimate the kinetic energy acquired by
Setler [38]

Here we can use momentum conservation as in this type of collision there is no external force on it

m_1v_{1i} + m_2v_{2i} = m_1 v_{1f} + m_2v_{2f}

now here we can say

m_1 = 10 g

v_{1i} = 0

m_2 = 550 g

v_{2i} = 3.5 m/s

now here we can say

10*0 + 550 * 3.5 = 10 v_{1f} + 550 v_{2f}

192.5 = v_{1f} + 55 v_{2f}

now by coefficient of restitution

for elastic collision we know that e = 1

v_{2f} - v_{1f} = e(v_{1i} - v_{2i})

v_{2f} - v_{1f} = 0 - 3.5

now by solving the two equation

56v_{2f} = 189

v_{2f} = 3.375 m/s

also we know that

v_{1f} = v_{2f} + 3.5 = 3.375 + 3.5 = 6.875 m/s

so final speed of the nail is 6.875 m/s


6 0
3 years ago
Read 2 more answers
Two bodies are falling with negligible air resistance, side by side, above a horizontal plane. If one of the bodies is given an
tankabanditka [31]

Answer:4-strikes the plane at same time as the other body

Explanation:

Given

If both bodies is falling on a horizontal plane and second body is given an acceleration in horizontal direction then it does not change the time to reach the Horizontal Plate as there is no change in vertical direction.

Horizontal acceleration will give only horizontal range and horizontal velocity.

8 0
3 years ago
Read 2 more answers
A 2.93 kg particle has a velocity of (2.98 i hat - 3.98 j) m/s.
cupoosta [38]

Answer:

a) The x and y components of the momentum are 8.731\,\frac{kg\cdot m}{s} and -11.661\,\frac{kg\cdot m}{s}, respectively.

b) The magnitude and direction of its momentum are approximately 14.567 kilogram-meters per second and 306.823º.

Explanation:

a) The vectorial equation of momentum is represented by the following expression:

\vec p = m\cdot \vec v (1)

Where:

\vec p - Vector momentum, measured in kilogram-meters per second.

m - Mass of the particle, measured in kilograms.

\vec v - Vector velocity, measured in meters per second.

If we know that m = 2.93\,kg and \vec v = 2.98\,\hat{i}-3.98\,\hat{j}\,\,\,\left[\frac{m}{s} \right], then the momentum is:

\vec p = (2.93)\cdot (2.98\,\hat{i}-3.98\,\hat{j})\,\,\,\left[\frac{kg\cdot m}{s} \right]

\vec p = 8.731\,\hat{i}-11.661\,\hat{j}\,\,\,\left[\frac{kg\cdot m}{s} \right]

The x and y components of the momentum are 8.731\,\frac{kg\cdot m}{s} and -11.661\,\frac{kg\cdot m}{s}, respectively.

b) The magnitude and direction of momentum are represented by the following expressions:

\|\vec p \| = \sqrt{p_{x}^{2}+p_{y}^{2}} (2)

\theta = \tan^{-1}\left(\frac{p_{y}}{p_{x}} \right) (3)

Where:

\|\vec p\| - Magnitude of momentum, measured in kilogram-meters per second.

\theta - Direction of momentum, measured in sexagesimal degrees.

If we know that p_{x} = 8.731\,\frac{kg\cdot m}{s} and p_{y} = -11.661\,\frac{kg\cdot m}{s}, then the magnitude and direction of momentum are, respectively:

\|\vec p\| = \sqrt{\left(8.731\,\frac{kg\cdot m}{s} \right)^{2}+\left(-11.661\,\frac{kg\cdot m}{s} \right)^{2}}

\|\vec p\| \approx 14.567\,\frac{kg\cdot m}{s}

\theta =\tan^{-1}\left(\frac{-11.661\,\frac{kg\cdot m}{s} }{8.731\,\frac{kg\cdot m}{s} } \right)

\theta \approx 306.823^{\circ}

The magnitude and direction of its momentum are approximately 14.567 kilogram-meters per second and 306.823º.

6 0
3 years ago
Describe the differences among ultraviolet waves, visible light waves, and infrared waves. how are these waves alike?
sergeinik [125]
Our eyes are detectors which are designed to detect visible light waves (or visible radiation). ... The electromagnetic spectrum includes gamma rays, X-rays, ultraviolet, visible, infrared, microwaves, and radio waves. The only difference between these different types of radiation is their wavelength or frequency.
4 0
3 years ago
Two masses, each weighing 1.0 × 103 kilograms and moving with the same speed of 12.5 meters/second, are approaching each other.
juin [17]
A perfectly elastic<span> collision is defined as one in which there is no loss of </span>kinetic energy<span> in the collision. Therefore, we just add the kinetic energies of each system. We calculate as follows:

KE = 0.5(</span>1.0 × 10^3)(12.5 )^2 + 0.5(1.0 × 10^3)(12.5 )^2
KE = 156250 J = 1.6 x 10^5 J -------> OPTION A
5 0
3 years ago
Other questions:
  • List six forms of electromagnetic radiation from the shortest waves(highest energy) to the longest waves (lowest energy)
    11·1 answer
  • Describe what is happening at the cascade range?
    6·1 answer
  • Julia produces a 2 mA current by moving the south pole of a bar magnet into a solenoid. The solenoid contains 150 loops of wire.
    9·2 answers
  • Suppose you want a telescope that would allow you to see distinguishing features as small as 3.5 km on the Moon some 384,000 km
    11·1 answer
  • Eliza went for a swim. When she came out of the water, she felt cold. At the moment, a strong wind blew, and she felt even colde
    5·1 answer
  • Squids and octopuses propel themselves by expelling water. They do this by keeping water in a cavity and then suddenly contracti
    6·1 answer
  • 1. If point Q is reflected across x = 1, what are the coordinates of its reflection image?
    12·2 answers
  • Average speed can be represented by the mathematical expression
    12·1 answer
  • A car of mass M traveling with velocity v strikes a car of mass M that is at rest. The two cars’ bodies mesh in the collision. T
    12·1 answer
  • Draw a neat labelled diagram for a particle moving in a circular path with a constant speed. In your diagram show the direction
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!