Answer:
The Stefan–Boltzmann constant (also Stefan's constant), a physical constant denoted by the Greek letter σ (sigma), is the constant of proportionality in the Stefan–Boltzmann law: "the total intensity radiated over all wavelengths increases as the temperature increases", of a black body which is proportional to the ...
Choice A is correct.======Kinetic energy equation: KE = (1/2)(m)(v²)This tells us that KE is directly proportional to mass and the square of velocity. In other words, the more mass and more velocity an object has, the more kinetic energy.If an object is sitting at the top of a ramp, there is no velocity and therefore no kinetic energy. Choices B and D are wrong.A golf ball has more mass than a ping-pong ball, so a ping-pong ball would have less kinetic energy than a golf ball rolling off the end of a ramp. Choice C is wrong.Choice A is correct.
Answer:Mass of the body = 20 kg.
Final Velocity = 5.8 m/s.
Initial velocity = 0
Time = 3 seconds.
Using the Formula,
Acceleration = (v - u)/ t
= (5.8 - 0)/ 3
= 1.6 m /s².
Now, Using the Formula,
Force = mass × acceleration
= 20 × 1.6
=
Explanation: I REALLY HOPE THIS HELPS I'M KINDA NEW AT THIS :] :]
Answer:
d)
Explanation:
Electrons are lost or gained when the ballon is rubbed with a PVC. As the rubber ballon lost electrons, it will have more protons, hence the positive charge. (More protons than electrons in the ballon).
Answer:
Probability of tunneling is 
Solution:
As per the question:
Velocity of the tennis ball, v = 120 mph = 54 m/s
Mass of the tennis ball, m = 100 g = 0.1 kg
Thickness of the tennis ball, t = 2.0 mm = 
Max velocity of the tennis ball,
= 89 m/s
Now,
The maximum kinetic energy of the tennis ball is given by:

Kinetic energy of the tennis ball, KE' = 
Now, the distance the ball can penetrate to is given by:


Thus



Now,
We can calculate the tunneling probability as:



Taking log on both the sides:

