Fffhjndnjehevevevrvrvevrbbrbrrjjrjrjrhrhrhbrvrvvrurrjjrjrhrhr
Is this a multiple choice question? Or would you just like me to state generally the greatest influence over how big a baby elephant will grow ?
Answer:
The fly travels 2.4 m
Explanation:
Since the Two steamrollers begin 100 m apart and head toward each other, each at a constant speed of 1.00 m/s, we can find the time until they crash by the formula:
Distance = Speed × Time
Time = Distance /Speed
Time = (100 m) / (1 m/s)
Time = 100 hours
Now, the fly will spend the same amount of time traveling as the steamrollers.
Since the fly moves at a speed of 2.4 m/s and we have a time of one hour the steamroller take to collide, then the fly will go a distance of;
Distance = speed x time = 2.4 × 1 = 2.4 m
Answer:
the volume is 0.253 cm³
Explanation:
The pressure underwater is related with the pressure in the surface through Pascal's law:
P(h)= Po + ρgh
where Po= pressure at a depth h under the surface (we assume = 1atm=101325 Pa) , ρ= density of water ,g= gravity , h= depth at h meters)
replacing values
P(h)= Po + ρgh = 101325 Pa + 1025 Kg/m³ * 9.8 m/s² * 20 m = 302225 Pa
Also assuming that the bubble behaves as an ideal gas
PV=nRT
where
P= absolute pressure, V= gas volume ,n= number of moles of gas, R= ideal gas constant , T= absolute temperature
therefore assuming that the mass of the bubble is the same ( it does not absorb other bubbles, divides into smaller ones or allow significant diffusion over its surface) we have
at the surface) PoVo=nRTo
at the depth h) PV=nRT
dividing both equations
(P/Po)(V/Vo)=(T/To)
or
V=Vo*(Po/P)(T/To) = 0.80 cm³ * (101325 Pa/302225 Pa)*(277K/293K) = 0.253 cm³
V = 0.253 cm³
Answer:

Explanation:
The change in electrical potential energy of a charged particle moving through a potential difference is given by

where
q is the magnitude of the charge of the particle
is the potential difference
In this problem:
- the charge of the particle is 3.00 elementary charges, so

- the potential difference is

So, the change in electrical potential energy is
