Line L's slope intercept form is
y = 4x + 7
It's point slope form is
y - 3 = 4 (x - -1)
You can check the point slope form and match it with the slope intercept form:
y - 3 = 4 (x - -1)
y - 3 = 4x + 4
y = 4x + 7
y = 4x + 7 = y = 4x + 7
Answer:
The data are at the
<u>Nominal</u> level of measurement.
The given calculation is wrong because average (mean) cannot be calculated for nominal level of measurement.
Step-by-step explanation:
The objective here is to Identify the level of measurement of the data, and explain what is wrong with the given calculation.
a)
The data are at the <u> Nominal </u> level of measurement due to the fact that it portrays the qualitative levels of naming and representing different hierarchies from 100 basketball, 200 basketball, 300 football, 400 anything else
b) We are being informed that, the average (mean) is calculated for 597 respondents and the result is 256.1.
The given calculation is wrong because average (mean) cannot be calculated for nominal level of measurement. At nominal level this type of data set do not measure at all , it is not significant to compute their average (mean).
Answer:
B is True
A, C. D are false
Step-by-step explanation:
Given :
Sample size, n = 120
Mean diameter, m = 10
Standard deviation, s = 0.24
Confidence level, Zcritical ; Z0.05/2 = Z0.025 = 1.96
The confidence interval represents how the true mean value compares to a set of values around the mean computed from a set of sample drawn from the population.
The population here is N = 10000
To obtain
Confidence interval (C. I) :
Mean ± margin of error
Margin of Error = Zcritical * s/sqrt(n)
Margin of Error = 1.96 * 0.24/sqrt(120)
Confidence interval for the 10,000 ball bearing :
10 ± 1.96 * (0.24) / sqrt(120)
Hence. The confidence interval defined as :
10 ± 1.96 * (0.24) / sqrt(120) is the 95% confidence interval for the mean diameter of the 10,000 bearings in the box.
It would be x=-4 have a good day